Suppr超能文献

层状铋氧卤化物的太阳能水分解和固氮作用。

Solar Water Splitting and Nitrogen Fixation with Layered Bismuth Oxyhalides.

机构信息

Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, College of Chemistry, Central China Normal University , Wuhan 430079, P. R. China.

出版信息

Acc Chem Res. 2017 Jan 17;50(1):112-121. doi: 10.1021/acs.accounts.6b00523. Epub 2016 Dec 23.

Abstract

Hydrogen and ammonia are the chemical molecules that are vital to Earth's energy, environmental, and biological processes. Hydrogen with renewable, carbon-free, and high combustion-enthalpy hallmarks lays the foundation of next-generation energy source, while ammonia furnishes the building blocks of fertilizers and proteins to sustain the lives of plants and organisms. Such merits fascinate worldwide scientists in developing viable strategies to produce hydrogen and ammonia. Currently, at the forefronts of hydrogen and ammonia syntheses are solar water splitting and nitrogen fixation, because they go beyond the high temperature and pressure requirements of methane stream reforming and Haber-Bosch reaction, respectively, as the commercialized hydrogen and ammonia production routes, and inherit the natural photosynthesis virtues that are green and sustainable and operate at room temperature and atmospheric pressure. The key to propelling such photochemical reactions lies in searching photocatalysts that enable water splitting into hydrogen and nitrogen fixation to make ammonia efficiently. Although the past 40 years have witnessed significant breakthroughs using the most widely studied TiO, SrTiO, (GaZn)(NO), CdS, and g-CN for solar chemical synthesis, two crucial yet still unsolved issues challenge their further progress toward robust solar water splitting and nitrogen fixation, including the inefficient steering of electron transportation from the bulk to the surface and the difficulty of activating the N≡N triple bond of N. This Account details our endeavors that leverage layered bismuth oxyhalides as photocatalysts for efficient solar water splitting and nitrogen fixation, with a focus on addressing the above two problems. We first demonstrate that the layered structures of bismuth oxyhalides can stimulate an internal electric field (IEF) that is capable of efficiently separating electrons and holes after their formation and of precisely channeling their migration from the bulk to the surface along the different directions, thus enabling more electrons to reach the surface for water splitting and nitrogen fixation. Simultaneously, their oxygen termination feature and the strain differences between interlayers and intralayers render the easy generation of surface oxygen vacancies (OVs) that afford Lewis-base and unsaturated-unsaturated sites for nitrogen activation. With these rationales as the guideline, we can obtain striking visible-light hydrogen- and ammonia-evolving rates without using any noble-metal cocatalysts. Then we show how to utilize IEF and OV based strategies to improve the solar water splitting and nitrogen fixation performances of bismuth oxyhalide photocatalysts. Finally, we highlight the challenges remaining in using bismuth oxyhalides for solar hydrogen and ammonia syntheses, and the prospect of further development of this research field. We believe that our mechanistic insights could serve as a blueprint for the design of more efficient solar water splitting and nitrogen fixation systems, and layered bismuth oxyhalides might open up new photocatalyst paradigm for such two solar chemical syntheses.

摘要

氢和氨是对地球的能量、环境和生物过程至关重要的化学分子。具有可再生、无碳和高热燃烧焓特点的氢为下一代能源奠定了基础,而氨则为肥料和蛋白质提供了构建块,以维持植物和生物的生命。这些优点吸引了全球科学家开发可行的策略来生产氢气和氨气。目前,在氢气和氨气合成的前沿领域是太阳能水分解和氮气固定,因为它们分别超越了甲烷流重整和哈伯-博世反应作为商业氢气和氨气生产途径的高温和高压要求,并继承了自然光合作用的绿色和可持续性,在室温常压下运行的优点。推动这些光化学反应的关键在于寻找能够有效地将水分解为氢气和氮气固定为氨气的光催化剂。尽管在过去的 40 年中,使用最广泛研究的 TiO2、SrTiO3(GaZn)(NO)、CdS 和 g-CN 进行太阳能化学合成已经取得了重大突破,但仍有两个关键但尚未解决的问题挑战着它们在稳健的太阳能水分解和氮气固定方面的进一步发展,包括电子从体相到表面的传输效率低下和氮气中 N≡N 三键的激活困难。本综述详细介绍了我们利用层状铋氧卤化物作为光催化剂来高效进行太阳能水分解和氮气固定的努力,重点解决了上述两个问题。我们首先证明,铋氧卤化物的层状结构可以刺激内部电场(IEF),在形成电子和空穴后能够有效地分离它们,并沿着不同的方向精确地引导它们从体相迁移到表面,从而使更多的电子能够到达表面进行水分解和氮气固定。同时,其氧端基特征和层间与层内的应变差异使得表面氧空位(OVs)的生成变得容易,从而为氮气的活化提供了路易斯碱和不饱和-不饱和位点。基于这些理由,我们可以在不使用任何贵金属助催化剂的情况下获得显著的可见光制氢和氨的速率。然后,我们展示了如何利用 IEF 和 OV 策略来提高铋氧卤化物光催化剂的太阳能水分解和氮气固定性能。最后,我们强调了在使用铋氧卤化物进行太阳能制氢和氨合成方面仍然存在的挑战,以及进一步发展这一研究领域的前景。我们相信,我们的机理见解可以为设计更高效的太阳能水分解和氮气固定系统提供蓝图,而层状铋氧卤化物可能为这两种太阳能化学合成开辟新的光催化剂范例。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验