Murzi Julien, Topey Brett
Philosophy Department (KGW), University of Salzburg, Salzburg, Austria.
Philos Stud. 2021;178(10):3391-3420. doi: 10.1007/s11098-021-01606-3. Epub 2021 May 28.
On a widespread naturalist view, the meanings of mathematical terms are determined, and can only be determined, by the way we use mathematical language-in particular, by the basic mathematical principles we're disposed to accept. But it's mysterious how this can be so, since, as is well known, minimally strong first-order theories are non-categorical and so are compatible with countless non-isomorphic interpretations. As for second-order theories: though they typically enjoy categoricity results-for instance, Dedekind's categoricity theorem for second-order PA and Zermelo's quasi-categoricity theorem for second-order ZFC-these results require full second-order logic. So appealing to these results seems only to push the problem back, since the principles of second-order logic are themselves non-categorical: those principles are compatible with restricted interpretations of the second-order quantifiers on which Dedekind's and Zermelo's results are no longer available. In this paper, we provide a naturalist-friendly, non-revisionary solution to an analogous but seemingly more basic problem-Carnap's Categoricity Problem for propositional and first-order logic-and show that our solution generalizes, giving us full second-order logic and thereby securing the categoricity or quasi-categoricity of second-order mathematical theories. Briefly, the first-order quantifiers have their intended interpretation, we claim, because we're disposed to follow the quantifier rules in an open-ended way. As we show, given this open-endedness, the interpretation of the quantifiers must be permutation-invariant and so, by a theorem recently proved by Bonnay and Westerståhl, must be the standard interpretation. Analogously for the second-order case: we prove, by generalizing Bonnay and Westerståhl's theorem, that the permutation invariance of the interpretation of the second-order quantifiers, guaranteed once again by the open-endedness of our inferential dispositions, suffices to yield full second-order logic.
在一种广泛的自然主义观点看来,数学术语的意义是由我们使用数学语言的方式所决定的,并且只能由这种方式决定,特别是由我们倾向于接受的基本数学原理所决定。但这究竟如何可能却很神秘,因为众所周知,最小强度的一阶理论是非范畴性的,因此与无数非同构解释兼容。至于二阶理论:尽管它们通常有范畴性结果——例如,二阶皮亚诺算术的戴德金范畴性定理和二阶策梅洛 - 弗兰克尔集合论的策梅洛拟范畴性定理——但这些结果需要完全二阶逻辑。所以诉诸这些结果似乎只是把问题往后推,因为二阶逻辑的原理本身也是非范畴性的:那些原理与二阶量词的受限解释兼容,而在这些受限解释下,戴德金和策梅洛的结果不再成立。在本文中,我们为一个类似但看似更基本的问题——命题逻辑和一阶逻辑的卡尔纳普范畴性问题——提供了一个自然主义友好的、非修正性的解决方案,并表明我们的解决方案具有普遍性,能让我们得到完全二阶逻辑,从而确保二阶数学理论的范畴性或拟范畴性。简而言之,我们声称一阶量词具有其预期解释,是因为我们倾向于以一种开放式的方式遵循量词规则。正如我们所表明的,鉴于这种开放性,量词的解释必须是置换不变的,因此,根据博奈和韦斯特斯塔尔最近证明的一个定理,必须是标准解释。二阶情况类似:我们通过推广博奈和韦斯特斯塔尔的定理证明,二阶量词解释的置换不变性,再次由我们推理倾向的开放性所保证,足以产生完全二阶逻辑。