McKay Fletcher D M, Shaw R, Sánchez-Rodríguez A R, Daly K R, van Veelen A, Jones D L, Roose T
Bioengineering Sciences Research Group, Department of Mechanical Engineering, School of Engineering Sciences, Faculty of Engineering and Physical Sciences, University of Southampton, University Road, Southampton, SO17 1BJ UK.
Environment Centre Wales, Bangor University, Deiniol Road, Bangor, Gwynedd LL57 2UW UK.
Plant Soil. 2021;461(1-2):69-89. doi: 10.1007/s11104-019-04376-4. Epub 2019 Dec 5.
Organic acid exudation by plant roots is thought to promote phosphate (P) solubilisation and bioavailability in soils with poorly available nutrients. Here we describe a new combined experimental (microdialysis) and modelling approach to quantify citrate-enhanced P desorption and its importance for root P uptake.
To mimic the rhizosphere, microdialysis probes were placed in soil and perfused with citrate solutions (0.1, 1.0 and 10 mM) and the amount of P recovered from soil used to quantify rhizosphere P availability. Parameters in a mathematical model describing probe P uptake, citrate exudation, P movement and citrate-enhanced desorption were fit to the experimental data. These parameters were used in a model of a root which exuded citrate and absorbed P. The importance of soil citrate-P mobilisation for root P uptake was then quantified using this model.
A plant needs to exude citrate at a rate of 0.73 μmol cm of root h to see a significant increase in P absorption. Microdialysis probes with citrate in the perfusate were shown to absorb similar quantities of P to an exuding root.
A single root exuding citrate at a typical rate (4.3 × 10 μmol m of root h) did not contribute significantly to P uptake. Microdialysis probes show promise for measuring rhizosphere processes when calibration experiments and mathematical modelling are used to decouple microdialysis and rhizosphere mechanisms.
植物根系分泌有机酸被认为可促进养分有效性差的土壤中磷的溶解及生物有效性。在此,我们描述了一种新的结合实验(微透析)与建模的方法,用于量化柠檬酸盐增强的磷解吸及其对根系磷吸收的重要性。
为模拟根际环境,将微透析探针置于土壤中,并用柠檬酸盐溶液(0.1、1.0和10 mM)灌注,从土壤中回收的磷量用于量化根际磷的有效性。将描述探针磷吸收、柠檬酸盐分泌、磷移动及柠檬酸盐增强解吸的数学模型中的参数与实验数据进行拟合。这些参数被用于一个分泌柠檬酸盐并吸收磷的根系模型。然后使用该模型量化土壤中柠檬酸盐 - 磷的活化对根系磷吸收的重要性。
植物需要以0.