Department of Earth Science and Engineering, Imperial College London, London, SW7 2AZ, UK.
Instituto de Ciencia Molecular (ICMol), University of Valencia, 46980, Paterna, Spain.
Sci Rep. 2022 Apr 26;12(1):6774. doi: 10.1038/s41598-022-10493-5.
Citrate (Cit) and Deferoxamine B (DFOB) are two important organic ligands coexisting in soils with distinct different affinities for metal ions. It has been theorized that siderophores and weak organic ligands play a synergistic role during the transport of micronutrients in the rhizosphere, but the geochemical controls of this process remain unknown. Here we test the hypothesis that gradients in pH and ion strength regulate and enable the cooperation. To this end, first we use potentiometric titrations to identify the dominant Zn(II)-Cit and Zn(II)-DFOB complexes and to determine their ionic strength dependent stability constants between 0 and 1 mol dm. We parametrise the Extended Debye-Hückel (EDH) equation and determine accurate intrinsic association constants (logβ) for the formation of the complexes present. The speciation model developed confirms the presence of [Zn(Cit)], [Zn(HCit)], [Zn(Cit)(OH)], and [Zn(Cit)], with [Zn(Cit)] and [Zn(Cit)(OH)] the dominant species in the pH range relevant to rhizosphere. We propose the existence of a new [Zn(Cit)(OH)] complex above pH 10. We also verify the existence of two hexadentate Zn(II)-DFOB species, i.e., [Zn(DFOB)] and [Zn(HDFOB)], and of one tetradentate species [Zn(HDFOB)]. Second, we identify the pH and ionic strength dependent ligand exchange points (LEP) of Zn with citrate and DFOB and the stability windows for Zn(II)-Cit and Zn(II)-DFOB complexes in NaCl and rice soil solutions. We find that the LEPs fall within the pH and ionic strength gradients expected in rhizospheres and that the stability windows for Zn(II)-citrate and Zn(II)-DFOB, i.e., low and high affinity ligands, can be distinctly set off. This suggests that pH and ion strength gradients allow for Zn(II) complexes with citrate and DFOB to dominate in different parts of the rhizosphere and this explains why mixtures of low and high affinity ligands increase leaching of micronutrients in soils. Speciation models of soil solutions using newly determined association constants demonstrate that the presence of dissolved organic matter and inorganic ligands (i.e., bicarbonate, phosphate, sulphate, or chlorides) do neither affect the position of the LEP nor the width of the stability windows significantly. In conclusion, we demonstrate that cooperative and synergistic ligand interaction between low and high affinity ligands is a valid mechanism for controlling zinc transport in the rhizosphere and possibly in other environmental reservoirs such as in the phycosphere. Multiple production of weak and strong ligands is therefore a valid strategy of plants and other soil organisms to improve access to micronutrients.
柠檬酸盐(Cit)和去铁胺 B(DFOB)是两种在土壤中同时存在的重要有机配体,它们对金属离子的亲和力明显不同。理论上认为,铁载体和弱有机配体在根际中微量元素运输过程中发挥协同作用,但这一过程的地球化学控制仍不清楚。在这里,我们检验了这样一个假设,即 pH 值和离子强度梯度调节并使这种合作成为可能。为此,首先我们使用电位滴定法来确定主导的 Zn(II)-Cit 和 Zn(II)-DFOB 络合物,并确定它们在 0 至 1 mol dm 之间的离子强度依赖的稳定常数。我们参数化扩展 Debye-Hückel (EDH) 方程,并确定形成存在的络合物的准确固有缔合常数(logβ)。开发的形态模型证实了在与根际相关的 pH 范围内存在[Zn(Cit)]、[Zn(HCit)]、[Zn(Cit)(OH)]和[Zn(Cit)],其中[Zn(Cit)]和[Zn(Cit)(OH)]是主要物种。我们提出在 pH 高于 10 时存在一个新的[Zn(Cit)(OH)]络合物。我们还验证了两种六配位 Zn(II)-DFOB 物种的存在,即[Zn(DFOB)]和[Zn(HDFOB)],以及一种四配位物种[Zn(HDFOB)]。其次,我们确定了 Zn 与柠檬酸盐和 DFOB 的 pH 值和离子强度依赖的配体交换点(LEP)以及 NaCl 和水稻土壤溶液中 Zn(II)-Cit 和 Zn(II)-DFOB 络合物的稳定窗口。我们发现,LEP 落在根际中预期的 pH 值和离子强度梯度范围内,并且 Zn(II)-柠檬酸盐和 Zn(II)-DFOB 的稳定窗口,即低亲和性和高亲和性配体,可以明显区分开来。这表明,pH 值和离子强度梯度允许 Zn(II)与柠檬酸和 DFOB 形成的络合物在根际的不同部位占主导地位,这解释了为什么低亲和性和高亲和性配体的混合物会增加土壤中微量元素的淋失。使用新确定的缔合常数对土壤溶液的形态模型进行的研究表明,溶解有机物和无机配体(即碳酸氢盐、磷酸盐、硫酸盐或氯化物)的存在既不会影响 LEP 的位置,也不会显著影响稳定窗口的宽度。总之,我们证明了低亲和性和高亲和性配体之间的协同配体相互作用是控制根际锌运输的有效机制,可能也是其他环境储库(如菌根圈)中锌运输的有效机制。因此,多种弱配体和强配体的产生是植物和其他土壤生物提高获取微量元素能力的有效策略。