Brzeźniak Zdzisław, Dhariwal Gaurav, Le Gia Quoc Thong
Department of Mathematics, University of York, Heslington, York, YO10 5DD UK.
Institute of Analysis and Scientific Computing, Vienna University of Technology, Vienna, Austria.
Appl Math Optim. 2021;84(2):1971-2035. doi: 10.1007/s00245-020-09702-2. Epub 2020 Jul 11.
Incompressible Navier-Stokes equations on a thin spherical domain along with free boundary conditions under a random forcing are considered. The convergence of the martingale solution of these equations to the martingale solution of the stochastic Navier-Stokes equations on a sphere as the thickness converges to zero is established.
考虑在薄球域上具有自由边界条件的不可压缩纳维 - 斯托克斯方程,其受随机外力作用。随着厚度趋于零,建立了这些方程的鞅解到球面上随机纳维 - 斯托克斯方程的鞅解的收敛性。