Scharler Daniel F, Schröcker Hans-Peter
Department of Basic Sciences in Engineering Sciences, University of Innsbruck, Technikerstr. 13, 6020 Innsbruck, Austria.
Adv Appl Clifford Algebr. 2021;31(3):29. doi: 10.1007/s00006-021-01133-8. Epub 2021 Apr 7.
We present an algorithm to compute all factorizations into linear factors of univariate polynomials over the split quaternions, provided such a factorization exists. Failure of the algorithm is equivalent to non-factorizability for which we present also geometric interpretations in terms of rulings on the quadric of non-invertible split quaternions. However, suitable real polynomial multiples of split quaternion polynomials can still be factorized and we describe how to find these real polynomials. Split quaternion polynomials describe rational motions in the hyperbolic plane. Factorization with linear factors corresponds to the decomposition of the rational motion into hyperbolic rotations. Since multiplication with a real polynomial does not change the motion, this decomposition is always possible. Some of our ideas can be transferred to the factorization theory of motion polynomials. These are polynomials over the dual quaternions with real norm polynomial and they describe rational motions in Euclidean kinematics. We transfer techniques developed for split quaternions to compute new factorizations of certain dual quaternion polynomials.
我们提出一种算法,用于计算分裂四元数上一元多项式的所有线性因子分解,前提是这种分解存在。算法失败等同于不可分解性,对此我们还从非可逆分裂四元数二次曲面的直纹方面给出了几何解释。然而,分裂四元数多项式的合适实多项式倍数仍可分解,我们描述了如何找到这些实多项式。分裂四元数多项式描述双曲平面中的有理运动。用线性因子分解对应于将有理运动分解为双曲旋转。由于与实多项式相乘不会改变运动,所以这种分解总是可行的。我们的一些想法可以转移到运动多项式的分解理论中。这些是具有实范数多项式的对偶四元数上的多项式,它们描述欧几里得运动学中的有理运动。我们转移为分裂四元数开发的技术来计算某些对偶四元数多项式的新分解。