Suppr超能文献

双次数为(n,1)的四元数多项式的因式分解

Factorization of quaternionic polynomials of bi-degree (n,1).

作者信息

Lercher Johanna, Scharler Daniel, Schröcker Hans-Peter, Siegele Johannes

机构信息

Department of Basic Sciences in Engineering Sciences, University of Innsbruck, Technikerstr. 13, Innsbruck, 6020 Austria.

Institute of Mathematics and Scientific Computing, Universität Graz, Heinrichstr. 4, Graz, 8010 Austria.

出版信息

Beitr Algebra Geom. 2023;64(1):209-232. doi: 10.1007/s13366-022-00629-z. Epub 2022 Feb 22.

Abstract

We consider polynomials of bi-degree (, 1) over the skew field of quaternions where the indeterminates commute with each other and with all coefficients. Polynomials of this type do not generally admit factorizations. We recall a necessary and sufficient condition for existence of a factorization with univariate linear factors that has originally been stated by Skopenkov and Krasauskas. Such a factorization is, in general, non-unique by known factorization results for univariate quaternionic polynomials. We unveil existence of bivariate polynomials with non-unique factorizations that cannot be explained in this way and characterize them geometrically and algebraically. Existence of factorizations is related to the existence of special rulings of two different types (left/right) on the ruled surface parameterized by the bivariate polynomial in the projective space over the quaternions. Special non-uniqueness in above sense can be explained algebraically by commutation properties of factors in suitable factorizations. A necessary geometric condition for this to happen is degeneration to a point of at least one of the left/right rulings.

摘要

我们考虑在四元数斜域上双次数为(, 1)的多项式,其中不定元相互之间以及与所有系数都可交换。这种类型的多项式一般不允许因式分解。我们回顾一个最初由斯科彭科夫和克拉萨乌斯卡斯给出的关于存在单变量线性因子因式分解的充要条件。根据单变量四元数多项式的已知因式分解结果,这样的因式分解通常是非唯一的。我们揭示了存在不能以这种方式解释的具有非唯一因式分解的双变量多项式,并从几何和代数角度对它们进行了刻画。因式分解的存在与由双变量多项式在四元数上的射影空间中参数化的直纹曲面上两种不同类型(左/右)的特殊直母线的存在有关。上述意义上的特殊非唯一性可以通过合适因式分解中因子的交换性质从代数角度进行解释。发生这种情况的一个必要几何条件是至少一条左/右直母线退化为一个点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/20a1/9944413/c1540d8b9097/13366_2022_629_Fig1_HTML.jpg

相似文献

1
Factorization of quaternionic polynomials of bi-degree (n,1).双次数为(n,1)的四元数多项式的因式分解
Beitr Algebra Geom. 2023;64(1):209-232. doi: 10.1007/s13366-022-00629-z. Epub 2022 Feb 22.
2
An Algorithm for the Factorization of Split Quaternion Polynomials.一种分裂四元数多项式因式分解的算法。
Adv Appl Clifford Algebr. 2021;31(3):29. doi: 10.1007/s00006-021-01133-8. Epub 2021 Apr 7.
3
Factorization of Dual Quaternion Polynomials Without Study's Condition.无施图迪条件下对偶四元数多项式的因式分解
Adv Appl Clifford Algebr. 2021;31(2):22. doi: 10.1007/s00006-021-01123-w. Epub 2021 Mar 5.
4
Quadratic Split Quaternion Polynomials: Factorization and Geometry.二次分裂四元数多项式:因式分解与几何
Adv Appl Clifford Algebr. 2020;30(1):11. doi: 10.1007/s00006-019-1037-1. Epub 2019 Dec 17.
8
The relationship between zeros and factors of binding polynomials and cooperativity in protein-ligand binding.
J Theor Biol. 1985 Jun 21;114(4):605-14. doi: 10.1016/s0022-5193(85)80047-3.
9
Degree, quaternions and periodic solutions.
Philos Trans A Math Phys Eng Sci. 2021 Feb 22;379(2191):20190378. doi: 10.1098/rsta.2019.0378. Epub 2021 Jan 4.
10
The Study Variety of Conformal Kinematics.共形运动学的研究种类
Adv Appl Clifford Algebr. 2022;32(4):44. doi: 10.1007/s00006-022-01227-x. Epub 2022 Jul 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验