Lercher Johanna, Scharler Daniel, Schröcker Hans-Peter, Siegele Johannes
Department of Basic Sciences in Engineering Sciences, University of Innsbruck, Technikerstr. 13, Innsbruck, 6020 Austria.
Institute of Mathematics and Scientific Computing, Universität Graz, Heinrichstr. 4, Graz, 8010 Austria.
Beitr Algebra Geom. 2023;64(1):209-232. doi: 10.1007/s13366-022-00629-z. Epub 2022 Feb 22.
We consider polynomials of bi-degree (, 1) over the skew field of quaternions where the indeterminates commute with each other and with all coefficients. Polynomials of this type do not generally admit factorizations. We recall a necessary and sufficient condition for existence of a factorization with univariate linear factors that has originally been stated by Skopenkov and Krasauskas. Such a factorization is, in general, non-unique by known factorization results for univariate quaternionic polynomials. We unveil existence of bivariate polynomials with non-unique factorizations that cannot be explained in this way and characterize them geometrically and algebraically. Existence of factorizations is related to the existence of special rulings of two different types (left/right) on the ruled surface parameterized by the bivariate polynomial in the projective space over the quaternions. Special non-uniqueness in above sense can be explained algebraically by commutation properties of factors in suitable factorizations. A necessary geometric condition for this to happen is degeneration to a point of at least one of the left/right rulings.
我们考虑在四元数斜域上双次数为(, 1)的多项式,其中不定元相互之间以及与所有系数都可交换。这种类型的多项式一般不允许因式分解。我们回顾一个最初由斯科彭科夫和克拉萨乌斯卡斯给出的关于存在单变量线性因子因式分解的充要条件。根据单变量四元数多项式的已知因式分解结果,这样的因式分解通常是非唯一的。我们揭示了存在不能以这种方式解释的具有非唯一因式分解的双变量多项式,并从几何和代数角度对它们进行了刻画。因式分解的存在与由双变量多项式在四元数上的射影空间中参数化的直纹曲面上两种不同类型(左/右)的特殊直母线的存在有关。上述意义上的特殊非唯一性可以通过合适因式分解中因子的交换性质从代数角度进行解释。发生这种情况的一个必要几何条件是至少一条左/右直母线退化为一个点。