Suppr超能文献

分析用于合作多智能体强化学习的动作值网络的因式分解

Analysing factorizations of action-value networks for cooperative multi-agent reinforcement learning.

作者信息

Castellini Jacopo, Oliehoek Frans A, Savani Rahul, Whiteson Shimon

机构信息

Department of Computer Science, University of Liverpool, Liverpool, UK.

Interactive Intelligence Group, Delft University of Technology, Delft, The Netherlands.

出版信息

Auton Agent Multi Agent Syst. 2021;35(2):25. doi: 10.1007/s10458-021-09506-w. Epub 2021 Jun 7.

Abstract

Recent years have seen the application of deep reinforcement learning techniques to cooperative multi-agent systems, with great empirical success. However, given the lack of theoretical insight, it remains unclear what the employed neural networks are learning, or how we should enhance their learning power to address the problems on which they fail. In this work, we empirically investigate the learning power of various network architectures on a series of one-shot games. Despite their simplicity, these games capture many of the crucial problems that arise in the multi-agent setting, such as an exponential number of joint actions or the lack of an explicit coordination mechanism. Our results extend those in Castellini et al. (Proceedings of the 18th International Conference on Autonomous Agents and MultiAgent Systems, AAMAS'19.International Foundation for Autonomous Agents and Multiagent Systems, pp 1862-1864, 2019) and quantify how well various approaches can represent the requisite value functions, and help us identify the reasons that can impede good performance, like sparsity of the values or too tight coordination requirements.

摘要

近年来,深度强化学习技术已应用于协作多智能体系统,并取得了巨大的实证成功。然而,由于缺乏理论洞察力,目前尚不清楚所使用的神经网络在学习什么,或者我们应如何增强其学习能力以解决它们未能解决的问题。在这项工作中,我们通过一系列一次性博弈对各种网络架构的学习能力进行了实证研究。尽管这些博弈很简单,但它们捕捉了多智能体环境中出现的许多关键问题,比如联合行动数量呈指数级增长或缺乏明确的协调机制。我们的结果扩展了Castellini等人(第18届自治代理与多智能体系统国际会议论文集,AAMAS'19。自治代理与多智能体系统国际基金会,第1862 - 1864页,2019年)的研究成果,并量化了各种方法能够多好地表示所需的价值函数,同时帮助我们找出可能阻碍良好性能的原因,如价值的稀疏性或过于严格的协调要求。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4644/8550438/cb978bb7a53c/10458_2021_9506_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验