Suppr超能文献

IHG-MA:用于多交叉口交通信号控制的归纳异质图多智能体强化学习。

IHG-MA: Inductive heterogeneous graph multi-agent reinforcement learning for multi-intersection traffic signal control.

机构信息

School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan 611731, China.

出版信息

Neural Netw. 2021 Jul;139:265-277. doi: 10.1016/j.neunet.2021.03.015. Epub 2021 Mar 22.

Abstract

Multi-agent deep reinforcement learning (MDRL) has been widely applied in multi-intersection traffic signal control. The MDRL algorithms produce the decentralized cooperative traffic-signal policies via specialized multi-agent settings in certain traffic networks. However, the state-of-the-art MDRL algorithms seem to have some drawbacks. (1) It is desirable that the traffic-signal policies can be smoothly transferred to diverse traffic networks, however, the adopted specialized multi-agent settings hinder the traffic-signal policies to transfer and generalize to new traffic networks. (2) Existing MDRL algorithms which are based on deep neural networks cannot flexibly tackle a time-varying number of vehicles traversing the traffic networks. (3) Existing MDRL algorithms which are based on homogeneous graph neural networks fail to capture the heterogeneous features of objects in traffic networks. Motivated by the above observations, in this paper, we propose an algorithm, referred to as Inductive Heterogeneous Graph Multi-agent Actor-critic (IHG-MA) algorithm, for multi-intersection traffic signal control. The proposed IHG-MA algorithm has two features: (1) It conducts representation learning using a proposed inductive heterogeneous graph neural network (IHG), which is an inductive algorithm. The proposed IHG algorithm can generate embeddings for previously unseen nodes (e.g., new entry vehicles) and new graphs (e.g., new traffic networks). But unlike the algorithms based on the homogeneous graph neural network, IHG algorithm not only encodes heterogeneous features of each node, but also encodes heterogeneous structural (graph) information. (2) It also conducts policy learning using a proposed multi-agent actor-critic(MA), which is a decentralized cooperative framework. The proposed MA framework employs the final embeddings to compute the Q-value and policy, and then optimizes the whole algorithm via the Q-value and policy loss. Experimental results on different traffic datasets illustrate that IHG-MA algorithm outperforms the state-of-the-art algorithms in terms of multiple traffic metrics, which seems to be a new promising algorithm for multi-intersection traffic signal control.

摘要

多智能体深度强化学习(MDRL)已广泛应用于多交叉口交通信号控制。MDRL 算法通过特定交通网络中的专门多智能体设置生成分散式协作交通信号策略。然而,最新的 MDRL 算法似乎存在一些缺点。(1)理想情况下,交通信号策略可以平滑地转移到不同的交通网络中,但采用的专门多智能体设置会阻碍交通信号策略转移和推广到新的交通网络。(2)现有的基于深度神经网络的 MDRL 算法不能灵活地处理穿越交通网络的车辆数量随时间变化的情况。(3)现有的基于同构图神经网络的 MDRL 算法无法捕捉交通网络中对象的异构特征。受上述观察结果的启发,在本文中,我们提出了一种用于多交叉口交通信号控制的算法,称为归纳异构图多智能体 Actor-critic(IHG-MA)算法。所提出的 IHG-MA 算法具有两个特点:(1)它使用提出的归纳异构图神经网络(IHG)进行表示学习,IHG 是一种归纳算法。所提出的 IHG 算法可以为以前看不见的节点(例如新进入的车辆)和新图(例如新的交通网络)生成嵌入。但与基于同构图神经网络的算法不同,IHG 算法不仅编码每个节点的异构特征,还编码异构结构(图)信息。(2)它还使用提出的多智能体 Actor-critic(MA)进行策略学习,这是一种分散式协作框架。所提出的 MA 框架使用最终嵌入来计算 Q 值和策略,然后通过 Q 值和策略损失优化整个算法。在不同的交通数据集上的实验结果表明,IHG-MA 算法在多个交通指标方面优于最新算法,这似乎是一种用于多交叉口交通信号控制的有前途的新算法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验