Suppr超能文献

基于卷积神经网络和体表电位的心房颤动驱动部位无创估计

Non-invasive Estimation of Atrial Fibrillation Driver Position With Convolutional Neural Networks and Body Surface Potentials.

作者信息

Cámara-Vázquez Miguel Ángel, Hernández-Romero Ismael, Morgado-Reyes Eduardo, Guillem Maria S, Climent Andreu M, Barquero-Pérez Oscar

机构信息

Department of Signal Theory and Communications, Telematic Systems and Computation, Rey Juan Carlos University, Madrid, Spain.

ITACA Institute, Universitat Politècnica de València, Valencia, Spain.

出版信息

Front Physiol. 2021 Oct 14;12:733449. doi: 10.3389/fphys.2021.733449. eCollection 2021.

Abstract

Atrial fibrillation (AF) is characterized by complex and irregular propagation patterns, and AF onset locations and drivers responsible for its perpetuation are the main targets for ablation procedures. ECG imaging (ECGI) has been demonstrated as a promising tool to identify AF drivers and guide ablation procedures, being able to reconstruct the electrophysiological activity on the heart surface by using a non-invasive recording of body surface potentials (BSP). However, the inverse problem of ECGI is ill-posed, and it requires accurate mathematical modeling of both atria and torso, mainly from CT or MR images. Several deep learning-based methods have been proposed to detect AF, but most of the AF-based studies do not include the estimation of ablation targets. In this study, we propose to model the location of AF drivers from BSP as a supervised classification problem using convolutional neural networks (CNN). Accuracy in the test set ranged between 0.75 (SNR = 5 dB) and 0.93 (SNR = 20 dB upward) when assuming time independence, but it worsened to 0.52 or lower when dividing AF models into blocks. Therefore, CNN could be a robust method that could help to non-invasively identify target regions for ablation in AF by using body surface potential mapping, avoiding the use of ECGI.

摘要

心房颤动(AF)的特征是复杂且不规则的传播模式,AF的起始位置以及维持其持续存在的驱动因素是消融手术的主要目标。心电图成像(ECGI)已被证明是一种用于识别AF驱动因素并指导消融手术的有前景的工具,它能够通过对体表电位(BSP)进行无创记录来重建心脏表面的电生理活动。然而,ECGI的逆问题是不适定的,它需要对心房和躯干进行精确的数学建模,主要来自CT或MR图像。已经提出了几种基于深度学习的方法来检测AF,但大多数基于AF的研究并未包括对消融靶点的估计。在本研究中,我们建议使用卷积神经网络(CNN)将来自BSP的AF驱动因素位置建模为一个监督分类问题。在假设时间独立性的情况下,测试集的准确率在0.75(SNR = 5 dB)至0.93(SNR = 20 dB及以上)之间,但当将AF模型划分为多个块时,准确率会降至0.52或更低。因此,CNN可能是一种强大的方法,通过使用体表电位映射能够帮助非侵入性地识别AF中的消融目标区域,从而避免使用ECGI。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1f32/8552066/2e6f55593fa1/fphys-12-733449-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验