文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

卷积神经网络深度学习算法在肺结节检测和肺功能检查中的计算机断层扫描图像。

Computed Tomography Image under Convolutional Neural Network Deep Learning Algorithm in Pulmonary Nodule Detection and Lung Function Examination.

机构信息

Department of Respiratory Medicine, Xiangya Second Hospital of Central South University, Changsha 410006, Hunan, China.

Department of Imaging, Changsha Fourth Hospital (Changsha Hospital Affiliated to Hunan Normal University), Changsha 410006, Hunan, China.

出版信息

J Healthc Eng. 2021 Oct 22;2021:3417285. doi: 10.1155/2021/3417285. eCollection 2021.


DOI:10.1155/2021/3417285
PMID:34721823
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8556120/
Abstract

The objective of this study was to perform segmentation and extraction of CT images of pulmonary nodules based on convolutional neural networks (CNNs). The Mask-RCNN algorithm model is a typical end-to-end image segmentation model, which uses the R-FCN structure for nodule detection. The effect of applying the two algorithm models to the computed tomography (CT) diagnosis of pulmonary nodules was analyzed, and different indexes of pulmonary nodule CT images in lung function examination after algorithm optimization were compared. A total of 56 patients diagnosed with pulmonary nodules by surgery or puncture were taken as the research objects. Based on the Mask-RCNN algorithm, a model for CT image segmentation processing of pulmonary nodules was proposed. Subsequently, the 3D Faster-RCNN model was used to label the nodules in the pulmonary nodules. The experimental results showed that the trained Mask-RCNN algorithm model can effectively complete the segmentation task of lung CT images, but there was a little jitter at the boundary. The speed of R-FCN algorithm for nodular detection was 0.172 seconds/picture, and the accuracy was 88.9%. CT scans were performed on the 56 patients based on a deep learning algorithm. The results showed that 30 cases of malignant pulmonary nodules were confirmed, and the diagnostic accuracy was 93.75%. There were 22 benign lesions, the diagnostic accuracy was 91.67%, and the overall diagnostic accuracy was 92.85%. This study effectively improved the diagnostic efficiency of CT images of pulmonary nodules, and the accuracy of CT images in the diagnosis of pulmonary nodules was analyzed and evaluated. It provided theoretical support for the follow-up diagnosis of pulmonary nodules and the treatment of lung cancer. It also significantly improved the diagnostic effect and detection efficiency of pulmonary nodules.

摘要

本研究旨在基于卷积神经网络(CNN)对 CT 图像中的肺结节进行分割和提取。Mask-RCNN 算法模型是一种典型的端到端图像分割模型,它使用 R-FCN 结构进行结节检测。分析了将这两种算法模型应用于肺部结节计算机断层扫描(CT)诊断的效果,并比较了算法优化后肺功能检查中肺结节 CT 图像的不同指标。共选取 56 例经手术或穿刺诊断为肺结节的患者作为研究对象。基于 Mask-RCNN 算法,提出了一种用于肺结节 CT 图像分割处理的模型。随后,使用 3D Faster-RCNN 模型对肺结节中的结节进行标注。实验结果表明,训练后的 Mask-RCNN 算法模型能够有效地完成肺部 CT 图像的分割任务,但在边界处存在一些抖动。R-FCN 算法用于结节检测的速度为 0.172 秒/张,准确率为 88.9%。对 56 例患者进行基于深度学习算法的 CT 扫描。结果显示,经证实 30 例为恶性肺结节,诊断准确率为 93.75%。良性病变 22 例,诊断准确率为 91.67%,总诊断准确率为 92.85%。本研究有效提高了肺结节 CT 图像的诊断效率,分析和评价了 CT 图像在肺结节诊断中的准确性。为肺结节的后续诊断和肺癌的治疗提供了理论支持。同时,还显著提高了肺结节的诊断效果和检测效率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/584f/8556120/ac7502bb4104/JHE2021-3417285.008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/584f/8556120/d15b4183434f/JHE2021-3417285.001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/584f/8556120/a330e5beb9be/JHE2021-3417285.002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/584f/8556120/9f58ed35ab60/JHE2021-3417285.003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/584f/8556120/341afeabb453/JHE2021-3417285.004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/584f/8556120/ea4af5cefef6/JHE2021-3417285.005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/584f/8556120/c71ffee11d20/JHE2021-3417285.006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/584f/8556120/060be77dd693/JHE2021-3417285.007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/584f/8556120/ac7502bb4104/JHE2021-3417285.008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/584f/8556120/d15b4183434f/JHE2021-3417285.001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/584f/8556120/a330e5beb9be/JHE2021-3417285.002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/584f/8556120/9f58ed35ab60/JHE2021-3417285.003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/584f/8556120/341afeabb453/JHE2021-3417285.004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/584f/8556120/ea4af5cefef6/JHE2021-3417285.005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/584f/8556120/c71ffee11d20/JHE2021-3417285.006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/584f/8556120/060be77dd693/JHE2021-3417285.007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/584f/8556120/ac7502bb4104/JHE2021-3417285.008.jpg

相似文献

[1]
Computed Tomography Image under Convolutional Neural Network Deep Learning Algorithm in Pulmonary Nodule Detection and Lung Function Examination.

J Healthc Eng. 2021

[2]
Construction of U-Net++ pulmonary nodule intelligent analysis model based on feature weighted aggregation.

Technol Health Care. 2023

[3]
Fast and fully-automated detection and segmentation of pulmonary nodules in thoracic CT scans using deep convolutional neural networks.

Comput Med Imaging Graph. 2019-3-22

[4]
Fully automatic deep learning-based lung parenchyma segmentation and boundary correction in thoracic CT scans.

Int J Comput Assist Radiol Surg. 2024-2

[5]
An improved faster R-CNN algorithm for assisted detection of lung nodules.

Comput Biol Med. 2023-2

[6]
Design of lung nodules segmentation and recognition algorithm based on deep learning.

BMC Bioinformatics. 2021-11-8

[7]
Automated Pulmonary Nodule Classification in Computed Tomography Images Using a Deep Convolutional Neural Network Trained by Generative Adversarial Networks.

Biomed Res Int. 2019-1-2

[8]
Toward an Expert Level of Lung Cancer Detection and Classification Using a Deep Convolutional Neural Network.

Oncologist. 2019-4-17

[9]
[A deep learning-based lung nodule density classification and segmentation method and its effectiveness under different CT reconstruction algorithms].

Zhonghua Yi Xue Za Zhi. 2021-2-23

[10]
Improved lung nodule diagnosis accuracy using lung CT images with uncertain class.

Comput Methods Programs Biomed. 2018-5-18

引用本文的文献

[1]
A systematic review on deep learning-based automated cancer diagnosis models.

J Cell Mol Med. 2024-3

[2]
Deep Learning-Based Chest CT Image Features in Diagnosis of Lung Cancer.

Comput Math Methods Med. 2022

本文引用的文献

[1]
The value of bronchoscopy in patients with non-massive haemoptysis and a clear or benign computer tomogram scan.

Clin Respir J. 2021-4

[2]
Diagnostic Value of Rapid On-Site Evaluation for CT-Guided Percutaneous Fine Needle Aspiration in the Diagnosis of Pulmonary Occupying Lesions.

Biomed Res Int. 2020

[3]
Mass Detection and Segmentation in Digital Breast Tomosynthesis Using 3D-Mask Region-Based Convolutional Neural Network: A Comparative Analysis.

Front Mol Biosci. 2020-11-11

[4]
Pulmonary nodules in patients with primary Sjögren's syndrome: Causes, clinico-radiologic features, and outcomes.

Respir Med. 2020

[5]
Lung cancer LDCT screening and mortality reduction - evidence, pitfalls and future perspectives.

Nat Rev Clin Oncol. 2021-3

[6]
[Pulmonary nodules - an overview].

Ther Umsch. 2020

[7]
Colorectal cancer with indeterminate pulmonary nodules.

Neoplasma. 2020-2-28

[8]
Artificial intelligence in medical imaging.

Magn Reson Imaging. 2019-12-16

[9]
A Multi-Organ Nucleus Segmentation Challenge.

IEEE Trans Med Imaging. 2020-5

[10]
Deep Learning and Machine Vision Approaches for Posture Detection of Individual Pigs.

Sensors (Basel). 2019-8-29

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索