Suppr超能文献

大流行期间国际围产期结局(iPOP)研究:方案

The international Perinatal Outcomes in the Pandemic (iPOP) study: protocol.

作者信息

Stock Sarah J, Zoega Helga, Brockway Meredith, Mulholland Rachel H, Miller Jessica E, Been Jasper V, Wood Rachael, Abok Ishaya I, Alshaikh Belal, Ayede Adejumoke I, Bacchini Fabiana, Bhutta Zulfiqar A, Brew Bronwyn K, Brook Jeffrey, Calvert Clara, Campbell-Yeo Marsha, Chan Deborah, Chirombo James, Connor Kristin L, Daly Mandy, Einarsdóttir Kristjana, Fantasia Ilaria, Franklin Meredith, Fraser Abigail, Håberg Siri Eldevik, Hui Lisa, Huicho Luis, Magnus Maria C, Morris Andrew D, Nagy-Bonnard Livia, Nassar Natasha, Nyadanu Sylvester Dodzi, Iyabode Olabisi Dedeke, Palmer Kirsten R, Pedersen Lars Henning, Pereira Gavin, Racine-Poon Amy, Ranger Manon, Rihs Tonia, Saner Christoph, Sheikh Aziz, Swift Emma M, Tooke Lloyd, Urquia Marcelo L, Whitehead Clare, Yilgwan Christopher, Rodriguez Natalie, Burgner David, Azad Meghan B

机构信息

Usher Institute, University of Edinburgh, Edinburgh, UK.

Centre for Big Data Research in Health, Faculty of Medicine, UNSW Sydney, Sydney, Australia.

出版信息

Wellcome Open Res. 2021 Feb 2;6:21. doi: 10.12688/wellcomeopenres.16507.1. eCollection 2021.

Abstract

Preterm birth is the leading cause of infant death worldwide, but the causes of preterm birth are largely unknown. During the early COVID-19 lockdowns, dramatic reductions in preterm birth were reported; however, these trends may be offset by increases in stillbirth rates. It is important to study these trends globally as the pandemic continues, and to understand the underlying cause(s). Lockdowns have dramatically impacted maternal workload, access to healthcare, hygiene practices, and air pollution - all of which could impact perinatal outcomes and might affect pregnant women differently in different regions of the world. In the international Perinatal Outcomes in the Pandemic (iPOP) Study, we will seize the unique opportunity offered by the COVID-19 pandemic to answer urgent questions about perinatal health. In the first two study phases, we will use population-based aggregate data and standardized outcome definitions to: 1) Determine rates of preterm birth, low birth weight, and stillbirth and describe changes during lockdowns; and assess if these changes are consistent globally, or differ by region and income setting, 2) Determine if the magnitude of changes in adverse perinatal outcomes during lockdown are modified by regional differences in COVID-19 infection rates, lockdown stringency, adherence to lockdown measures, air quality, or other social and economic markers, obtained from publicly available datasets. We will undertake an interrupted time series analysis covering births from January 2015 through July 2020. The iPOP Study will involve at least 121 researchers in 37 countries, including obstetricians, neonatologists, epidemiologists, public health researchers, environmental scientists, and policymakers. We will leverage the most disruptive and widespread "natural experiment" of our lifetime to make rapid discoveries about preterm birth. Whether the COVID-19 pandemic is worsening or unexpectedly improving perinatal outcomes, our research will provide critical new information to shape prenatal care strategies throughout (and well beyond) the pandemic.

摘要

早产是全球婴儿死亡的主要原因,但早产的原因在很大程度上尚不清楚。在新冠疫情早期封锁期间,有报告称早产率大幅下降;然而,这些趋势可能会被死产率的上升所抵消。随着疫情的持续,在全球范围内研究这些趋势并了解其潜在原因非常重要。封锁对孕产妇工作量、医疗保健可及性、卫生习惯和空气污染产生了巨大影响——所有这些都可能影响围产期结局,并且在世界不同地区可能对孕妇产生不同影响。在国际大流行期间围产期结局(iPOP)研究中,我们将抓住新冠疫情带来的独特机会,回答有关围产期健康的紧迫问题。在前两个研究阶段,我们将使用基于人群的汇总数据和标准化结局定义来:1)确定早产、低出生体重和死产的发生率,并描述封锁期间的变化;评估这些变化在全球是否一致,或因地区和收入水平而异,2)确定封锁期间不良围产期结局变化的幅度是否因新冠感染率、封锁严格程度、对封锁措施的遵守情况、空气质量或其他社会和经济指标的地区差异而有所改变,这些数据来自公开可用的数据集。我们将进行一项中断时间序列分析,涵盖2015年1月至2020年7月的出生情况。iPOP研究将涉及37个国家的至少121名研究人员,包括产科医生、新生儿科医生、流行病学家、公共卫生研究人员、环境科学家和政策制定者。我们将利用我们有生之年最具颠覆性和最广泛的“自然实验 ”,迅速发现有关早产的问题。无论新冠疫情是使围产期结局恶化还是意外改善,我们的研究都将提供关键的新信息,以制定贯穿(及远远超出)疫情期间的产前护理策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0d52/8524299/740617bf5056/wellcomeopenres-6-18180-g0000.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验