Suppr超能文献

扭曲双层石墨烯中异质应变驱动的动态可调莫尔超晶格

Heterostrain-enabled dynamically tunable moiré superlattice in twisted bilayer graphene.

作者信息

Gao Xuejiao, Sun Hao, Kang Dong-Ho, Wang Chongwu, Wang Qi Jie, Nam Donguk

机构信息

School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore.

出版信息

Sci Rep. 2021 Nov 1;11(1):21402. doi: 10.1038/s41598-021-00757-x.

Abstract

The ability to precisely control moiré patterns in two-dimensional materials has enabled the realization of unprecedented physical phenomena including Mott insulators, unconventional superconductivity, and quantum emission. Along with the twist angle, the application of independent strain in each layer of stacked two-dimensional materials-termed heterostrain-has become a powerful means to manipulate the moiré potential landscapes. Recent experimental studies have demonstrated the possibility of continuously tuning the twist angle and the resulting physical properties. However, the dynamic control of heterostrain that allows the on-demand manipulation of moiré superlattices has yet to be experimentally realized. Here, by harnessing the weak interlayer van der Waals bonding in twisted bilayer graphene devices, we demonstrate the realization of dynamically tunable heterostrain of up to 1.3%. Polarization-resolved Raman spectroscopy confirmed the existence of substantial heterostrain by presenting triple G peaks arising from the independently strained graphene layers. Theoretical calculations revealed that the distorted moiré patterns via heterostrain can significantly alter the electronic structure of twisted bilayer graphene, allowing the emergence of multiple absorption peaks ranging from near-infrared to visible spectral ranges. Our experimental demonstration presents a new degree of freedom towards the dynamic modulation of moiré superlattices, holding the promise to unveil unprecedented physics and applications of stacked two-dimensional materials.

摘要

在二维材料中精确控制莫尔条纹图案的能力,使得包括莫特绝缘体、非常规超导性和量子发射在内的前所未有的物理现象得以实现。除了扭转角之外,在堆叠的二维材料的每一层中施加独立应变(称为异质应变),已成为操纵莫尔势景观的有力手段。最近的实验研究表明,连续调节扭转角及其产生的物理性质是可能的。然而,能够按需操纵莫尔超晶格的异质应变的动态控制尚未通过实验实现。在此,通过利用扭曲双层石墨烯器件中的弱层间范德华键,我们展示了高达1.3%的动态可调异质应变的实现。偏振分辨拉曼光谱通过呈现由独立应变的石墨烯层产生的三重G峰,证实了大量异质应变的存在。理论计算表明,通过异质应变产生的扭曲莫尔条纹图案可以显著改变扭曲双层石墨烯的电子结构,从而在近红外到可见光谱范围内出现多个吸收峰。我们的实验演示为莫尔超晶格的动态调制提供了一个新的自由度,有望揭示堆叠二维材料前所未有的物理特性和应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6de4/8560801/bf3c5b038cdd/41598_2021_757_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验