Suppr超能文献

用于儿科患者质子和碳离子治疗的基于CBCT图像生成合成CT的无监督深度学习

Unsupervised Deep Learning for Synthetic CT Generation from CBCT Images for Proton and Carbon Ion Therapy for Paediatric Patients.

作者信息

Pepa Matteo, Taleghani Siavash, Sellaro Giulia, Mirandola Alfredo, Colombo Francesca, Vennarini Sabina, Ciocca Mario, Paganelli Chiara, Orlandi Ester, Baroni Guido, Pella Andrea

机构信息

Bioengineering Unit, Clinical Department, CNAO National Centre for Oncological Hadrontherapy, 27100 Pavia, Italy.

Department of Electronics, Information and Bioengineering, Politecnico di Milano (POLIMI), 20133 Milan, Italy.

出版信息

Sensors (Basel). 2024 Nov 22;24(23):7460. doi: 10.3390/s24237460.

Abstract

Image-guided treatment adaptation is a game changer in oncological particle therapy (PT), especially for younger patients. The purpose of this study is to present a cycle generative adversarial network (CycleGAN)-based method for synthetic computed tomography (sCT) generation from cone beam CT (CBCT) towards adaptive PT (APT) of paediatric patients. Firstly, 44 CBCTs of 15 young pelvic patients were pre-processed to reduce ring artefacts and rigidly registered on same-day CT scans (i.e., verification CT scans, vCT scans) and then inputted to the CycleGAN network (employing either Res-Net and U-Net generators) to synthesise sCT. In particular, 36 and 8 volumes were used for training and testing, respectively. Image quality was evaluated qualitatively and quantitatively using the structural similarity index metric (SSIM) and the peak signal-to-noise ratio (PSNR) between registered CBCT (rCBCT) and vCT and between sCT and vCT to evaluate the improvements brought by CycleGAN. Despite limitations due to the sub-optimal input image quality and the small field of view (FOV), the quality of sCT was found to be overall satisfactory from a quantitative and qualitative perspective. Our findings indicate that CycleGAN is promising to produce sCT scans with acceptable CT-like image texture in paediatric settings, even when CBCT with narrow fields of view (FOV) are employed.

摘要

图像引导的治疗适应性调整是肿瘤粒子治疗(PT)中的一项变革性技术,对年轻患者尤其如此。本研究的目的是提出一种基于循环生成对抗网络(CycleGAN)的方法,用于从锥形束CT(CBCT)生成合成计算机断层扫描(sCT),以用于儿科患者的适应性PT(APT)。首先,对15名年轻盆腔患者的44幅CBCT进行预处理,以减少环形伪影,并在同日CT扫描(即验证CT扫描,vCT扫描)上进行刚性配准,然后输入到CycleGAN网络(采用Res-Net和U-Net生成器)中以合成sCT。具体而言,分别使用36个和8个体积进行训练和测试。使用结构相似性指数度量(SSIM)以及配准后的CBCT(rCBCT)与vCT之间以及sCT与vCT之间的峰值信噪比(PSNR)对图像质量进行定性和定量评估,以评估CycleGAN带来的改进。尽管由于输入图像质量欠佳和视野(FOV)较小存在局限性,但从定量和定性角度来看,sCT的质量总体上令人满意。我们的研究结果表明,即使采用视野狭窄(FOV)的CBCT,CycleGAN在儿科环境中也有望生成具有可接受的类CT图像纹理的sCT扫描。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f288/11644336/315dceb2da0b/sensors-24-07460-g003.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验