Environmental Sciences Division, Oak Ridge National Laboratory, P. O. Box 2008, MS 6038, Oak Ridge, Tennessee 37831-6038, USA.
Earth Systems Science Division, Pacific Northwest National Laboratory, Richland, WA, USA.
Environ Sci Process Impacts. 2022 Sep 21;24(9):1392-1405. doi: 10.1039/d1em00287b.
In anoxic environments, anaerobic microorganisms carrying the gene cluster can mediate the transformation of inorganic mercury (Hg(II)) to monomethylmercury (MMHg). The kinetics of Hg(II) transformation to MMHg in periphyton from East Fork Poplar Creek (EFPC) in Oak Ridge, TN have previously been modeled using a transient availability model (TAM). The TAM for Hg(II) methylation combines methylation/demethylation kinetics with kinetic expressions for processes that decrease Hg(II) and MMHg availability for methylation and demethylation (multisite sorption of Hg(II) and MMHg, Hg(II) reduction/Hg(0) oxidation). In this study, the TAM is used for the first time to describe MMHg production in sediment. We assessed MMHg production in sediment microcosms using two different sediment types from EFPC: a relatively anoxic, carbon-rich sediment with higher microbial activity (higher CO production from sediment) and a relatively oxic, sandy, carbon-poor sediment with lower microbial activity (lower CO production from sediment). Based on 16s rRNA sequencing, the overall microbial community structure in the two sediments was retained during the incubations. However, the containing methanogenic communities differed between sediment types and their growth followed different trajectories over the course of incubations, potentially contributing to the distinct patterns of MMHg production observed. The general TAM paradigm performed well in describing MMHg production in the sediments. However, the MMHg production and ancillary data suggested the need to revise the model structure to incorporate terms for concentration-dependent microbial activity over the course of the incubations. We modified the TAM to include Monod-type kinetics for methylation and demethylation and observed an improved fit for the carbon-rich, microbially active sediment. Overall our work shows that the TAM can be applied to describe Hg(II) methylation in sediments and that including expressions accounting for concentration-dependent microbial activity can improve the accuracy of the model description of the data in some cases.
在缺氧环境中,携带基因簇的厌氧微生物可以介导无机汞 (Hg(II)) 向甲基汞 (MMHg) 的转化。先前曾使用瞬态可用性模型 (TAM) 对田纳西州橡树岭东溪白杨溪 (EFPC) 周丛生物中 Hg(II) 向 MMHg 转化的动力学进行了建模。Hg(II) 甲基化的 TAM 将甲基化/脱甲基动力学与降低 Hg(II) 和 MMHg 甲基化和脱甲基可用性的动力学表达结合在一起(Hg(II)和 MMHg 的多点吸附、Hg(II)还原/Hg(0)氧化)。在这项研究中,TAM 首次用于描述沉积物中 MMHg 的生成。我们使用来自 EFPC 的两种不同沉积物类型评估了沉积物微宇宙中 MMHg 的生成:一种相对缺氧、富碳、微生物活性较高(从沉积物中产生的 CO 较多)和一种相对有氧、沙质、贫碳、微生物活性较低(从沉积物中产生的 CO 较少)。基于 16s rRNA 测序,在孵育过程中,两种沉积物中的整体微生物群落结构得以保留。然而, 中含有产甲烷 群落,它们在沉积物中的生长轨迹不同,这可能导致观察到的 MMHg 生成模式存在明显差异。通用 TAM 范式在描述沉积物中 MMHg 的生成方面表现良好。然而,MMHg 的生成和辅助数据表明需要修改模型结构,以纳入孵育过程中浓度依赖性微生物活性的术语。我们修改了 TAM,以包括甲基化和脱甲基的 Monod 型动力学,并观察到对富碳、微生物活性高的沉积物的拟合效果更好。总的来说,我们的工作表明,TAM 可用于描述沉积物中的 Hg(II) 甲基化,并且在某些情况下,包括考虑浓度依赖性微生物活性的表达式可以提高模型对数据的描述准确性。