Ellis L, Morgan D O, Clauser E, Edery M, Jong S M, Wang L H, Roth R A, Rutter W J
Cold Spring Harb Symp Quant Biol. 1986;51 Pt 2:773-84. doi: 10.1101/sqb.1986.051.01.090.
Our experiments with the hIR protein have been designed to address a very general question of transmembrane receptor structure and function: What are the roles and interactions of the various deduced structural domains of such molecules in the initiation of the response of cells to extracellular signals? All of the evidence to date supports the previous hypothesis based on biochemical data that the IR requires ligand-activated TPK functions to initiate the insulin response by cells (for review, see Kahn 1985). Thus, mutations that compromise hIR TPK activity (site-directed point mutations or deletions) result in a concomitant decrease in at least one aspect of insulin action (glucose uptake; Ellis et al. 1986a). Other studies utilizing microinjection of antibodies to inhibit the receptor kinase have extended this conclusion to include a critical role for the receptor kinase in insulin's ability to stimulate ribosomal protein S6 phosphorylation in CHO cells, glycogen synthetase in hepatoma cells, glucose uptake in adipocytes (Morgan and Roth 1987), and frog oocyte maturation (Morgan et al. 1986). Second, analyses of cell lines that express experimentally truncated hIR TPKs demonstrate that, when membrane-anchored, this TPK domain is in fact capable of autonomous hormone-independent IR function: Such cells exhibit a constitutively elevated, insulin-independent uptake of 2-deoxyglucose (Ellis et al. 1987). Finally, by substitution of a homologous TPK for that of hIR, we find that although such a hybrid is capable of insulin-dependent transmembrane signaling (phosphorylation of the hybrid beta-subunit on tyrosine residues), the hybrid IR.ros molecule does not function as an IR in such cells: It mediates neither short-term (uptake of 2-deoxyglucose) nor long-term (incorporation of [3H]thymidine) effects of insulin (L. Ellis et al., in prep.). Together, these results suggest that (1) the hIR TPK domain conveys a substrate specificity for the insulin response and (2) that a functional hIR extracellular domain alone is not sufficient for generation of the insulin response (e.g., ligand-induced aggregation, or simple delivery of insulin into the cell). With the linking of the extracellular and cytoplasmic domains of the hIR molecule has evolved a cellular mechanism for the control of hIR TPK activity; the result is that cells which express the IR are now insulin responsive, and the physiological responses associated with the hormone are ligand-activated. Thus, the uncontrolled state of autonomous TPK activity, with the associated constitutive physiological response (e.g., as exhibited by the spBam hIR mutant), is circumvented.(ABSTRACT TRUNCATED AT 400 WORDS)
我们对人胰岛素受体(hIR)蛋白进行的实验旨在解决一个有关跨膜受体结构与功能的非常普遍的问题:此类分子的各个推导结构域在细胞对细胞外信号的反应起始过程中发挥着什么作用以及它们之间如何相互作用?迄今为止,所有证据均支持基于生化数据的先前假说,即胰岛素受体需要配体激活的酪氨酸蛋白激酶(TPK)功能来启动细胞的胰岛素反应(综述见Kahn,1985年)。因此,损害hIR TPK活性的突变(定点突变或缺失)会导致胰岛素作用的至少一个方面(葡萄糖摄取; Ellis等人,1986a)随之降低。其他利用显微注射抗体抑制受体激酶的研究扩展了这一结论,认为受体激酶在胰岛素刺激CHO细胞中核糖体蛋白S6磷酸化、肝癌细胞中糖原合成酶、脂肪细胞中葡萄糖摄取(Morgan和Roth,1987年)以及蛙卵母细胞成熟(Morgan等人,1986年)的能力中起关键作用。其次,对表达经实验截短的hIR TPK的细胞系的分析表明,当锚定在膜上时,该TPK结构域实际上能够进行自主的非激素依赖性胰岛素受体功能:此类细胞表现出持续升高的、不依赖胰岛素的2-脱氧葡萄糖摄取(Ellis等人,1987年)。最后,通过用人胰岛素受体的同源TPK进行替换,我们发现尽管这种杂种能够进行胰岛素依赖性跨膜信号传导(杂种β亚基酪氨酸残基的磷酸化),但杂种胰岛素受体-罗氏肉瘤病毒(IR.ros)分子在这类细胞中并不发挥胰岛素受体的功能:它既不介导胰岛素的短期作用(2-脱氧葡萄糖摄取),也不介导其长期作用([3H]胸苷掺入)(L. Ellis等人,正在准备中)。这些结果共同表明:(1)hIR TPK结构域赋予了胰岛素反应的底物特异性;(2)仅功能性的hIR细胞外结构域不足以产生胰岛素反应(例如,配体诱导的聚集,或将胰岛素简单递送至细胞内)。随着hIR分子细胞外和细胞质结构域的连接,进化出了一种控制hIR TPK活性的细胞机制;结果是,表达胰岛素受体的细胞现在对胰岛素有反应,并且与该激素相关的生理反应是由配体激活的。因此,自主TPK活性的失控状态以及相关的组成性生理反应(例如,spBam hIR突变体所表现出的)得以避免。(摘要截短至400字)