Suppr超能文献

在实验性生存时间数据的荟萃分析中使用中位数生存。

Using median survival in meta-analysis of experimental time-to-event data.

机构信息

Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK.

Department of Neurosurgery, Royal Victoria Hospital, Belfast, UK.

出版信息

Syst Rev. 2021 Nov 2;10(1):292. doi: 10.1186/s13643-021-01824-0.

Abstract

BACKGROUND

Time-to-event data is frequently reported in both clinical and preclinical research spheres. Systematic review and meta-analysis is a tool that can help to identify pitfalls in preclinical research conduct and reporting that can help to improve translational efficacy. However, pooling of studies using hazard ratios (HRs) is cumbersome especially in preclinical meta-analyses including large numbers of small studies. Median survival is a much simpler metric although because of some limitations, which may not apply to preclinical data, it is generally not used in survival meta-analysis. We aimed to appraise its performance when compared with hazard ratio-based meta-analysis when pooling large numbers of small, imprecise studies.

METHODS

We simulated a survival dataset with features representative of a typical preclinical survival meta-analysis, including with influence of a treatment and a number of covariates. We calculated individual patient data-based hazard ratios and median survival ratios (MSRs), comparing the summary statistics directly and their performance at random-effects meta-analysis. Finally, we compared their sensitivity to detect associations between treatment and influential covariates at meta-regression.

RESULTS

There was an imperfect correlation between MSR and HR, although the opposing direction of treatment effects between summary statistics appeared not to be a major issue. Precision was more conservative for HR than MSR, meaning that estimates of heterogeneity were lower. There was a slight sensitivity advantage for MSR at meta-analysis and meta-regression, although power was low in all circumstances.

CONCLUSIONS

We believe we have validated MSR as a summary statistic for use in a meta-analysis of small, imprecise experimental survival studies-helping to increase confidence and efficiency in future reviews in this area. While assessment of study precision and therefore weighting is less reliable, MSR appears to perform favourably during meta-analysis. Sensitivity of meta-regression was low for this set of parameters, so pooling of treatments to increase sample size may be required to ensure confidence in preclinical survival meta-regressions.

摘要

背景

时间事件数据在临床和临床前研究领域都有频繁的报道。系统综述和荟萃分析是一种可以帮助识别临床前研究实施和报告中陷阱的工具,有助于提高转化效果。然而,使用风险比(HRs)进行研究的汇总在包括大量小研究的临床前荟萃分析中是很麻烦的。中位生存时间是一个更简单的指标,尽管由于一些限制,它通常不适用于生存荟萃分析,但它可能不适用于临床前数据。我们旨在评估当汇总大量小且不精确的研究时,与基于风险比的荟萃分析相比,其表现如何。

方法

我们模拟了一个具有典型临床前生存荟萃分析特征的生存数据集,包括治疗和多个协变量的影响。我们计算了基于个体患者数据的风险比和中位生存比(MSR),直接比较汇总统计数据及其在随机效应荟萃分析中的表现。最后,我们比较了它们在荟萃回归中检测治疗与有影响的协变量之间关联的敏感性。

结果

MSR 与 HR 之间存在不完善的相关性,尽管汇总统计数据的治疗效果方向相反似乎不是主要问题。HR 的精度比 MSR 更保守,这意味着异质性的估计值较低。在荟萃分析和荟萃回归中,MSR 具有轻微的敏感性优势,尽管在所有情况下,功效都很低。

结论

我们相信我们已经验证了 MSR 作为汇总统计量在小且不精确的实验生存研究荟萃分析中的使用,有助于提高该领域未来综述的可信度和效率。虽然评估研究的精度和因此的权重不太可靠,但在荟萃分析中,MSR 似乎表现良好。对于这些参数集,荟萃回归的敏感性较低,因此可能需要汇总处理来增加样本量,以确保临床前生存荟萃回归的可信度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0aac/8561932/309f5735ccba/13643_2021_1824_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验