Latvian Institute of Organic Synthesis, Aizkraukles Str 21, Riga, LV1006, Latvia.
Latvian Institute of Organic Synthesis, Aizkraukles Str 21, Riga, LV1006, Latvia.
Free Radic Biol Med. 2021 Dec;177:370-380. doi: 10.1016/j.freeradbiomed.2021.10.035. Epub 2021 Oct 30.
Increased tissue content of long-chain acylcarnitines may induce mitochondrial and cardiac damage by stimulating ROS production. N-trimethyllysine dioxygenase (TMLD) is the first enzyme in the carnitine/acylcarnitine biosynthesis pathway. Inactivation of the TMLHE gene (TMLHE KO) in mice is expected to limit long-chain acylcarnitine synthesis and thus induce a cardio- and mitochondria-protective phenotype. TMLHE gene deletion in male mice lowered acylcarnitine concentrations in blood and cardiac tissues by up to 85% and decreased fatty acid oxidation by 30% but did not affect muscle and heart function in mice. Metabolome profile analysis revealed increased levels of polyunsaturated fatty acids (PUFAs) and a global shift in fatty acid content from saturated to unsaturated lipids. In the risk area of ischemic hearts in TMLHE KO mouse, the OXPHOS-dependent respiration rate and OXPHOS coupling efficiency were fully preserved. Additionally, the decreased long-chain acylcarnitine synthesis rate in TMLHE KO mice prevented ischaemia-reperfusion-induced ROS production in cardiac mitochondria. This was associated with a 39% smaller infarct size in the TMLHE KO mice. The arrest of the acylcarnitine biosynthesis pathway in TMLHE KO mice prevents ischaemia-reperfusion-induced damage in cardiac mitochondria and decreases infarct size. These results confirm that the decreased accumulation of ROS-increasing fatty acid metabolism intermediates prevents mitochondrial and cardiac damage during ischaemia-reperfusion.
长链酰基辅酶 A 的组织含量增加可能通过刺激 ROS 产生而导致线粒体和心脏损伤。N-三甲基赖氨酸双加氧酶 (TMLD) 是肉碱/酰基辅酶 A 生物合成途径中的第一个酶。预计在小鼠中敲除 TMLHE 基因(TMLHE KO)将限制长链酰基辅酶 A 的合成,从而诱导心脏和线粒体保护表型。TMLHE 基因缺失使雄性小鼠血液和心脏组织中的酰基肉碱浓度降低了 85%,脂肪酸氧化减少了 30%,但不影响小鼠的肌肉和心脏功能。代谢组学分析显示多不饱和脂肪酸 (PUFA) 的水平升高,以及脂肪酸含量从饱和向不饱和脂质的整体转变。在 TMLHE KO 小鼠缺血性心脏的风险区域,OXPHOS 依赖性呼吸率和 OXPHOS 偶联效率得到了完全保留。此外,TMLHE KO 小鼠中长链酰基辅酶 A 合成率的降低阻止了心脏线粒体中缺血再灌注诱导的 ROS 产生。这与 TMLHE KO 小鼠的梗塞面积减少了 39%有关。TMLHE KO 小鼠中酰基辅酶 A 生物合成途径的阻断可防止缺血再灌注引起的心脏线粒体损伤并减少梗塞面积。这些结果证实,减少增加 ROS 的脂肪酸代谢中间产物的积累可防止缺血再灌注期间的线粒体和心脏损伤。