Suppr超能文献

利用 Rocker-meth 绘制癌症中差异甲基化区域的图谱。

Charting differentially methylated regions in cancer with Rocker-meth.

机构信息

Bioinformatics Unit, Hospital of Prato, Prato, Italy.

Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy.

出版信息

Commun Biol. 2021 Nov 2;4(1):1249. doi: 10.1038/s42003-021-02761-3.

Abstract

Differentially DNA methylated regions (DMRs) inform on the role of epigenetic changes in cancer. We present Rocker-meth, a new computational method exploiting a heterogeneous hidden Markov model to detect DMRs across multiple experimental platforms. Through an extensive comparative study, we first demonstrate Rocker-meth excellent performance on synthetic data. Its application to more than 6,000 methylation profiles across 14 tumor types provides a comprehensive catalog of tumor type-specific and shared DMRs, and agnostically identifies cancer-related partially methylated domains (PMD). In depth integrative analysis including orthogonal omics shows the enhanced ability of Rocker-meth in recapitulating known associations, further uncovering the pan-cancer relationship between DNA hypermethylation and transcription factor deregulation depending on the baseline chromatin state. Finally, we demonstrate the utility of the catalog for the study of colorectal cancer single-cell DNA-methylation data.

摘要

差异甲基化区域(DMRs)反映了表观遗传变化在癌症中的作用。我们提出了 Rocker-meth,这是一种新的计算方法,利用异构隐马尔可夫模型来检测多个实验平台上的 DMRs。通过广泛的比较研究,我们首先证明了 Rocker-meth 在合成数据上的出色性能。它在 14 种肿瘤类型的 6000 多个甲基化谱上的应用提供了肿瘤类型特异性和共享 DMRs 的综合目录,并在不依赖于基线染色质状态的情况下,盲目识别与癌症相关的部分甲基化域(PMD)。包括正交组学在内的深入综合分析表明,Rocker-meth 能够更好地重现已知关联的能力得到了增强,进一步揭示了 DNA 过度甲基化和转录因子失调之间的泛癌关系。最后,我们证明了该目录在研究结直肠癌单细胞 DNA 甲基化数据中的实用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3352/8563962/1693946cddb1/42003_2021_2761_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验