Diao Yifan, Jung Sungyoon, Kouhnavard Mojgan, Woon Reagan, Yang Haoru, Biswas Pratim, D'Arcy Julio M
Institute of Materials Science & Engineering, Washington University, St. Louis, Missouri 63130, United States.
Department of Energy, Environment & Chemical Engineering, Washington University, St. Louis, Missouri 63130, United States.
ACS Cent Sci. 2021 Oct 27;7(10):1668-1675. doi: 10.1021/acscentsci.1c00712. Epub 2021 Sep 28.
Atmospheric pollution demands the development of solar-driven photocatalytic technologies for the conversion of CO into a fuel; state-of-the-art cocatalyst systems demonstrate conversion efficiencies currently unattainable by a single catalyst. Here, we upend the status quo demonstrating that the nanofibrillar conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT) is a record-breaking single catalyst for the photoreduction of CO to CO. This high catalytic efficiency stems from a highly conductive nanofibrillar structure that significantly enhances surface area, CO adsorption and light absorption. Moreover, the polymer's band gap is optimized via chemical doping/dedoping treatments using hydrochloric acid, ammonia hydroxide, and hydrazine. The hydrazine-treated PEDOT catalyst exhibits 100% CO yield under a stable regime (>10 h) with a maximum rate of CO evolution (3000 μmol g h) that is 2 orders of magnitude higher than the top performing single catalyst and surpassed only by three other cocatalyst systems. Nanofibrillar PEDOT provides a new direction for designing the next generation of high-efficiency photoreduction catalysts.
大气污染促使人们开发太阳能驱动的光催化技术,用于将一氧化碳转化为燃料;目前最先进的助催化剂系统所展示的转化效率是单一催化剂目前无法实现的。在此,我们打破了现状,证明纳米纤维导电聚合物聚(3,4-乙撑二氧噻吩)(PEDOT)是将一氧化碳光还原为一氧化碳的破纪录单一催化剂。这种高催化效率源于高度导电的纳米纤维结构,该结构显著提高了表面积、一氧化碳吸附和光吸收。此外,通过使用盐酸、氢氧化铵和肼进行化学掺杂/去掺杂处理来优化聚合物的带隙。经肼处理的PEDOT催化剂在稳定状态(>10小时)下表现出100%的一氧化碳产率,一氧化碳释放的最大速率(3000 μmol g⁻¹ h⁻¹)比性能最佳的单一催化剂高2个数量级,仅被其他三种助催化剂系统超越。纳米纤维PEDOT为设计下一代高效光还原催化剂提供了新方向。