Coskun Halime, Aljabour Abdalaziz, De Luna Phil, Farka Dominik, Greunz Theresia, Stifter David, Kus Mahmut, Zheng Xueli, Liu Min, Hassel Achim W, Schöfberger Wolfgang, Sargent Edward H, Sariciftci Niyazi Serdar, Stadler Philipp
Linz Institute for Organic Solar Cells, Institute of Physical Chemistry, Johannes Kepler University Linz, Altenberger Strasse 69, 4040 Linz, Austria.
Department of Chemical Engineering, Selçuk University, 42075 Konya, Turkey.
Sci Adv. 2017 Aug 4;3(8):e1700686. doi: 10.1126/sciadv.1700686. eCollection 2017 Aug.
Selective electrocatalysts are urgently needed for carbon dioxide (CO) reduction to replace fossil fuels with renewable fuels, thereby closing the carbon cycle. To date, noble metals have achieved the best performance in energy yield and faradaic efficiency and have recently reached impressive electrical-to-chemical power conversion efficiencies. However, the scarcity of precious metals makes the search for scalable, metal-free, CO reduction reaction (CORR) catalysts all the more important. We report an all-organic, that is, metal-free, electrocatalyst that achieves impressive performance comparable to that of best-in-class Ag electrocatalysts. We hypothesized that polydopamine-a conjugated polymer whose structure incorporates hydrogen-bonded motifs found in enzymes-could offer the combination of efficient electrical conduction, together with rendered active catalytic sites, and potentially thereby enable CORR. Only by developing a vapor-phase polymerization of polydopamine were we able to combine the needed excellent conductivity with thin film-based processing. We achieve catalytic performance with geometric current densities of 18 mA cm at 0.21 V overpotential (-0.86 V versus normal hydrogen electrode) for the electrosynthesis of C species (carbon monoxide and formate) with continuous 16-hour operation at >80% faradaic efficiency. Our catalyst exhibits lower overpotentials than state-of-the-art formate-selective metal electrocatalysts (for example, 0.5 V for Ag at 18 mA cm). The results confirm the value of exploiting hydrogen-bonded sequences as effective catalytic centers for renewable and cost-efficient industrial CORR applications.
迫切需要选择性电催化剂来将二氧化碳(CO)还原,用可再生燃料替代化石燃料,从而闭合碳循环。迄今为止,贵金属在能量产率和法拉第效率方面表现最佳,最近还实现了令人瞩目的电化学功率转换效率。然而,贵金属的稀缺使得寻找可扩展的、无金属的二氧化碳还原反应(CORR)催化剂变得更加重要。我们报道了一种全有机的,即无金属的电催化剂,其性能可与同类最佳的银电催化剂相媲美。我们推测聚多巴胺——一种共轭聚合物,其结构包含在酶中发现的氢键基序——可以提供高效的导电性能与活性催化位点的组合,并有可能实现CORR。只有通过开发聚多巴胺的气相聚合,我们才能将所需的优异导电性与基于薄膜的加工相结合。在0.21 V过电位(相对于标准氢电极-0.86 V)下,我们实现了18 mA cm的几何电流密度的催化性能,用于电合成含碳物种(一氧化碳和甲酸盐),连续运行16小时,法拉第效率>80%。我们的催化剂表现出比最先进的甲酸盐选择性金属电催化剂更低的过电位(例如,在18 mA cm时,银的过电位为0.5 V)。结果证实了利用氢键序列作为可再生且经济高效的工业CORR应用的有效催化中心的价值。