Finance Business Division, Xiamen ITG Group Corp., Ltd, Fujian, China.
Department of Mathematics and Statistics, University of Regina, Regina, Saskatchewan, Canada.
Stat Med. 2022 Mar 30;41(7):1148-1156. doi: 10.1002/sim.9246. Epub 2021 Nov 2.
Missing data are a major complication in longitudinal data analysis. Weighted generalized estimating equations (WGEEs, Robins et al, J Am Stat Assoc 1995;90:106-121) were developed to deal with missing response data. They have been extended for data with both missing responses and missing covariates (Chen et al, J Am Stat Assoc 2010;105:336-353). However, it may introduce more variability in dealing with the correlation structure of the responses. We propose new WGEEs for missing at random data where both response and (time-dependent) covariates may have values missing in nonmonotone missing data patterns. We also explain how to improve the estimation efficiency of WGEEs using a unified approach (Zhao and Liu, AStA Adv Stat Anal 2021;105(1):87-101). The proposed unified estimator is consistent and more efficient than the regular WGEE estimator. It is computationally simple and can be directly implemented in standard software. Simulation studies for both continuous response and binary response data are provided to examine the performance of the proposed estimators. A clinical trial example investigating the quality of life of women with early-stage breast cancer and the associated factors is analyzed.
缺失数据是纵向数据分析中的一个主要难题。加权广义估计方程(WGEE,Robins 等人,J Am Stat Assoc 1995;90:106-121)被开发出来处理缺失响应数据。它们已经扩展到既有缺失响应又有缺失协变量的数据(Chen 等人,J Am Stat Assoc 2010;105:336-353)。然而,它在处理响应的相关结构时可能会引入更多的可变性。我们提出了新的 WGEE,用于随机缺失数据,其中响应和(时变)协变量都可能在非单调缺失数据模式中具有缺失值。我们还解释了如何使用统一方法(Zhao 和 Liu,AStA Adv Stat Anal 2021;105(1):87-101)来提高 WGEE 的估计效率。所提出的统一估计量是一致的,并且比常规 WGEE 估计量更有效。它在计算上很简单,可以直接在标准软件中实现。提供了针对连续响应和二项响应数据的模拟研究,以检验所提出的估计量的性能。分析了一项针对早期乳腺癌女性生活质量及其相关因素的临床试验示例。