Department of Obstetrics, Gynecology and Reproductive Sciences, School of Medicine, University of Maryland, Baltimore, Maryland.
Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research, School of Medicine, University of Maryland, Baltimore, Maryland.
Am J Physiol Regul Integr Comp Physiol. 2021 Dec 1;321(6):R912-R924. doi: 10.1152/ajpregu.00004.2021. Epub 2021 Nov 3.
We hypothesize that intrauterine hypoxia (HPX) alters the mitochondrial phenotype in fetal hearts contributing to developmental programming. Pregnant guinea pigs were exposed to normoxia (NMX) or hypoxia (HPX, 10.5% O), starting at early [25 days (25d), 39d duration] or late gestation (50d, 14d duration). Near-term (64d) male and female fetuses were delivered by hysterotomy from anesthetized sows, and body/organ weights were measured. Left ventricles of fetal hearts were excised and frozen for measurement of expression of complex (I-V) subunits, fusion (Mfn2/OPA1) and fission (DRP1/Fis1) proteins, and enzymatic rates of I and IV from isolated mitochondrial proteins. Chronic HPX decreased fetal body weight and increased relative placenta weight regardless of timing. Early-onset HPX increased I, III, and V subunit levels, increased complex I but decreased IV activities in males but not females (all < 0.05). Late-onset HPX decreased ( < 0.05) I, III, and V levels in both sexes but increased I and decreased IV activities in males only. Both HPX conditions decreased cardiac mitochondrial DNA content in males only. Neither early- nor late-onset HPX had any effect on Mfn2 levels but increased OPA1 in both sexes. Both HPX treatments increased DRP1/Fis1 levels in males. In females, early-onset HPX increased DRP1 with no effect on Fis1, whereas late-onset HPX increased Fis1 with no effect on DRP1. We conclude that both early- and late-onset HPX disrupts the expression/activities of select complexes that could reduce respiratory efficiency and shifts dynamics toward fission in fetal hearts. Thus, intrauterine HPX disrupts the mitochondrial phenotype predominantly in male fetal hearts, potentially altering cardiac metabolism and predisposing the offspring to heart dysfunction.
我们假设宫内缺氧(HPX)改变了胎儿心脏的线粒体表型,导致发育编程。怀孕的豚鼠在早期(25 天[25d],持续 39 天)或晚期(50 天,持续 14 天)妊娠时暴露于常氧(NMX)或缺氧(HPX,10.5% O)中。通过剖腹术从麻醉母猪中分娩接近足月(64d)的雄性和雌性胎儿,并测量体重/器官重量。从胎儿心脏中取出左心室并冷冻,用于测量分离的线粒体蛋白中复合物(I-V)亚基、融合(Mfn2/OPA1)和裂变(DRP1/Fis1)蛋白的表达以及 I 和 IV 的酶活性。慢性 HPX 无论时机如何,均降低胎儿体重并增加相对胎盘重量。早期发作的 HPX 增加了雄性 I、III 和 V 亚基水平,增加了复合物 I 但降低了 IV 活性(均<0.05),但对雌性没有影响。晚期发作的 HPX 降低了两性的 I、III 和 V 水平,但仅增加了雄性的 I 和降低了 IV 活性。两种 HPX 情况均降低了雄性的心脏线粒体 DNA 含量。早期和晚期发作的 HPX 均未影响 Mfn2 水平,但增加了两性的 OPA1。两种 HPX 处理均增加了雄性的 DRP1/Fis1 水平。在雌性中,早期发作的 HPX 增加了 DRP1,而对 Fis1 没有影响,而晚期发作的 HPX 增加了 Fis1,而对 DRP1 没有影响。我们的结论是,早期和晚期发作的 HPX 均破坏了选择复合物的表达/活性,这可能会降低呼吸效率,并使胎儿心脏的动力学向裂变转移。因此,宫内 HPX 主要破坏雄性胎儿心脏的线粒体表型,可能改变心脏代谢并使后代易患心脏功能障碍。