Suppr超能文献

适应新环境:人类心肌细胞的产后成熟。

Adapting to a new environment: postnatal maturation of the human cardiomyocyte.

机构信息

Department of Pharmacology & Physiology, George Washington University, Washington, DC, USA.

Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital, Washington, DC, USA.

出版信息

J Physiol. 2023 Jul;601(13):2593-2619. doi: 10.1113/JP283792. Epub 2023 Apr 9.

Abstract

The postnatal mammalian heart undergoes remarkable developmental changes, which are stimulated by the transition from the intrauterine to extrauterine environment. With birth, increased oxygen levels promote metabolic, structural and biophysical maturation of cardiomyocytes, resulting in mature muscle with increased efficiency, contractility and electrical conduction. In this Topical Review article, we highlight key studies that inform our current understanding of human cardiomyocyte maturation. Collectively, these studies suggest that human atrial and ventricular myocytes evolve quickly within the first year but might not reach a fully mature adult phenotype until nearly the first decade of life. However, it is important to note that fetal, neonatal and paediatric cardiac physiology studies are hindered by a number of limitations, including the scarcity of human tissue, small sample size and a heavy reliance on diseased tissue samples, often without age-matched healthy controls. Future developmental studies are warranted to expand our understanding of normal cardiac physiology/pathophysiology and inform age-appropriate treatment strategies for cardiac disease.

摘要

哺乳动物的心脏在产后会经历显著的发育变化,这些变化是由从宫内到宫外环境的转变所刺激的。出生后,氧气水平的增加促进了心肌细胞的代谢、结构和生物物理成熟,从而产生了效率更高、收缩力更强和电传导性更好的成熟肌肉。在这篇专题综述中,我们重点介绍了一些关键研究,这些研究为我们目前对人类心肌细胞成熟的理解提供了信息。总的来说,这些研究表明,人类心房和心室肌细胞在出生后的第一年迅速进化,但可能要到生命的第一个十年才达到完全成熟的成人表型。然而,值得注意的是,胎儿、新生儿和儿科心脏生理学研究受到许多限制的阻碍,包括人类组织的稀缺性、样本量小以及对疾病组织样本的严重依赖,这些样本通常没有年龄匹配的健康对照组。未来的发育研究将有助于我们进一步了解正常的心脏生理学/病理生理学,并为心脏疾病提供适合年龄的治疗策略。

相似文献

1
Adapting to a new environment: postnatal maturation of the human cardiomyocyte.
J Physiol. 2023 Jul;601(13):2593-2619. doi: 10.1113/JP283792. Epub 2023 Apr 9.
2
The molecular and functional identities of atrial cardiomyocytes in health and disease.
Biochim Biophys Acta. 2016 Jul;1863(7 Pt B):1882-93. doi: 10.1016/j.bbamcr.2015.11.025. Epub 2015 Nov 24.
3
4
Rat caval vein myocardium undergoes changes in conduction characteristics during postnatal ontogenesis.
Pflugers Arch. 2019 Dec;471(11-12):1493-1503. doi: 10.1007/s00424-019-02320-0. Epub 2019 Oct 26.
5
RNA-Binding Protein LIN28a Regulates New Myocyte Formation in the Heart Through Long Noncoding RNA-H19.
Circulation. 2023 Jan 24;147(4):324-337. doi: 10.1161/CIRCULATIONAHA.122.059346. Epub 2022 Oct 31.
6
Intrauterine inflammation exacerbates maladaptive remodeling of the immature myocardium after preterm birth in lambs.
Pediatr Res. 2022 Dec;92(6):1555-1565. doi: 10.1038/s41390-022-01955-7. Epub 2022 Mar 11.
8
A specialized population of Periostin-expressing cardiac fibroblasts contributes to postnatal cardiomyocyte maturation and innervation.
Proc Natl Acad Sci U S A. 2020 Sep 1;117(35):21469-21479. doi: 10.1073/pnas.2009119117. Epub 2020 Aug 17.
9
Learn from Your Elders: Developmental Biology Lessons to Guide Maturation of Stem Cell-Derived Cardiomyocytes.
Pediatr Cardiol. 2019 Oct;40(7):1367-1387. doi: 10.1007/s00246-019-02165-5. Epub 2019 Aug 6.
10
Chronic perinatal hypoxia delays cardiac maturation in a mouse model for cyanotic congenital heart disease.
Am J Physiol Heart Circ Physiol. 2021 May 1;320(5):H1873-H1886. doi: 10.1152/ajpheart.00870.2020. Epub 2021 Mar 19.

引用本文的文献

2
Developmental cues from epicardial cells simultaneously promote cardiomyocyte proliferation and electrochemical maturation.
Stem Cell Reports. 2025 Aug 12;20(8):102572. doi: 10.1016/j.stemcr.2025.102572. Epub 2025 Jul 3.
3
Postnatal development of human atrial cardiomyocytes: linking atrial gene expression profiles and atrial electrophysiology.
Am J Physiol Heart Circ Physiol. 2024 Dec 1;327(6):H1519-H1521. doi: 10.1152/ajpheart.00754.2024. Epub 2024 Nov 8.
4
Connecting transcriptomics with computational modeling to reveal developmental adaptations in pediatric human atrial tissue.
Am J Physiol Heart Circ Physiol. 2024 Dec 1;327(6):H1413-H1430. doi: 10.1152/ajpheart.00474.2024. Epub 2024 Oct 25.
6
Electroanatomical adaptations in the guinea pig heart from neonatal to adulthood.
Europace. 2024 Jul 2;26(7). doi: 10.1093/europace/euae158.
8
Influence of acidic metabolic environment on differentiation of stem cell-derived cardiomyocytes.
Front Cardiovasc Med. 2024 Mar 20;11:1288710. doi: 10.3389/fcvm.2024.1288710. eCollection 2024.
9
Emerging Roles of Cullin-RING Ubiquitin Ligases in Cardiac Development.
Cells. 2024 Jan 26;13(3):235. doi: 10.3390/cells13030235.

本文引用的文献

1
Diversity of cells and signals in the cardiovascular system.
J Physiol. 2023 Jul;601(13):2547-2592. doi: 10.1113/JP284011. Epub 2023 Feb 16.
2
Guidelines for assessment of cardiac electrophysiology and arrhythmias in small animals.
Am J Physiol Heart Circ Physiol. 2022 Dec 1;323(6):H1137-H1166. doi: 10.1152/ajpheart.00439.2022. Epub 2022 Oct 21.
4
Transient Cell Cycle Induction in Cardiomyocytes to Treat Subacute Ischemic Heart Failure.
Circulation. 2022 Apr 26;145(17):1339-1355. doi: 10.1161/CIRCULATIONAHA.121.057641. Epub 2022 Jan 21.
5
The electrical heart axis of the fetus between 18 and 24 weeks of gestation: A cohort study.
PLoS One. 2021 Dec 16;16(12):e0256115. doi: 10.1371/journal.pone.0256115. eCollection 2021.
6
Cellular Size, Gap Junctions, and Sodium Channel Properties Govern Developmental Changes in Cardiac Conduction.
Front Physiol. 2021 Oct 25;12:731025. doi: 10.3389/fphys.2021.731025. eCollection 2021.
7
Chronic hypoxia alters cardiac mitochondrial complex protein expression and activity in fetal guinea pigs in a sex-selective manner.
Am J Physiol Regul Integr Comp Physiol. 2021 Dec 1;321(6):R912-R924. doi: 10.1152/ajpregu.00004.2021. Epub 2021 Nov 3.
8
Transcriptomic entropy benchmarks stem cell-derived cardiomyocyte maturation against endogenous tissue at single cell level.
PLoS Comput Biol. 2021 Sep 17;17(9):e1009305. doi: 10.1371/journal.pcbi.1009305. eCollection 2021 Sep.
10
Metabolic profile of heart tissue in cyanotic congenital heart disease.
Am J Transl Res. 2021 May 15;13(5):4224-4232. eCollection 2021.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验