Department of Chemistry, Kwangwoon University, 20 Kwangwoon-ro, Nowon-gu, Seoul 01897, Republic of Korea.
Center for Convergence Bioceramic Materials, Convergence R&D Division, Korea Institute of Ceramic Engineering and Technology, 202, Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk 28160, Republic of Korea.
Biomater Sci. 2021 Dec 7;9(24):8160-8170. doi: 10.1039/d1bm01019k.
Nitric oxide (NO) is one of the smallest gas molecules with pharmaceutical and potential wound therapeutic effects due to its ability to regulate inflammation and eradicate bacterial infections. Recently, NO-releasing synthetic polymer-based nanofibers have become promising candidates for wound healing due to their facile functionalisation, tunable mechanical properties, and large effective surface areas. However, synthetic polymer-based nanofibers suffer from poor degradability in the physiological milieu, which restricts their use in applications. In this study, we developed biodegradable and nitric oxide-releasing nanofibers for potential wound healing applications. We synthesised dual-functionalised hyaluronic acid (HA) containing methacrylate groups and -diazeniumdiolate (NONOate)-NO donor groups and capable of forming crosslinked, electrospun nanofibers, with an effective NO payload, through an electrospinning process and photoinitiated polymerisation. Nuclear magnetic resonance, Fourier transform infrared spectroscopy, and ultraviolet-visible spectroscopy confirmed the successful synthesis of the functionalised HA. Control over both the NO donor and HA concentrations allowed for the preparation of NO-releasing, HA-based nanofibers of varying diameters (240-490 nm), NO payloads (10-620 nmol mg), maximum amounts of NO released (160-8920 ppb mg), and NO release durations (1.5-20.2 h). Moreover, the NO-releasing nanofibers had good biodegradability and potential wound healing effects without any observed cytotoxicity. The biodegradable and NO-releasing HA-based nanofibers developed in this study have the potential application in wound healing.
一氧化氮(NO)是最小的气体分子之一,由于其调节炎症和消灭细菌感染的能力,具有药物和潜在的伤口治疗效果。最近,由于其易于功能化、可调的机械性能和大的有效表面积,释放一氧化氮的合成聚合物基纳米纤维已成为伤口愈合的有前途的候选物。然而,合成聚合物基纳米纤维在生理环境中的降解性差,限制了它们在应用中的使用。在这项研究中,我们开发了可生物降解和释放一氧化氮的纳米纤维,用于潜在的伤口愈合应用。我们合成了双官能化透明质酸(HA),其中含有甲基丙烯酰基和-二氮烯二酸盐(NONOate)-NO 供体基团,并能够通过电纺工艺和光引发聚合形成交联的电纺纳米纤维,具有有效的 NO 有效载量。核磁共振、傅里叶变换红外光谱和紫外-可见光谱证实了功能化 HA 的成功合成。对 NO 供体和 HA 浓度的控制允许制备具有不同直径(240-490nm)、NO 有效载量(10-620nmolmg)、最大释放量的 NO 释放、HA 基纳米纤维(160-8920ppbmg)和 NO 释放持续时间(1.5-20.2h)。此外,释放 NO 的纳米纤维具有良好的生物降解性和潜在的伤口愈合效果,没有观察到细胞毒性。本研究中开发的可生物降解和释放一氧化氮的 HA 基纳米纤维具有在伤口愈合中的潜在应用。