Suppr超能文献

溶剂化和动态效应对对接模拟中结合口袋搜索的影响。

Cosolvent and Dynamic Effects in Binding Pocket Search by Docking Simulations.

机构信息

Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium.

Department of Chemistry, Universidad Autónoma de Madrid, Calle Francisco Tomás y Valiente, 7, 28049 Madrid, Spain.

出版信息

J Chem Inf Model. 2021 Nov 22;61(11):5508-5523. doi: 10.1021/acs.jcim.1c00924. Epub 2021 Nov 3.

Abstract

The lack of conformational sampling in virtual screening projects can lead to inefficient results because many of the potential drugs may not be able to bind to the target protein during the static docking simulations. Here, we performed ensemble docking for around 2000 United States Food and Drug Administration (FDA)-approved drugs with the RNA-dependent RNA polymerase (RdRp) protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) as a target. The representative protein structures were generated by clustering classical molecular dynamics trajectories, which were evolved using three solvent scenarios, namely, pure water, benzene/water and phenol/water mixtures. The introduction of dynamic effects in the theoretical model showed improvement in docking results in terms of the number of strong binders and binding sites in the protein. Some of the discovered pockets were found only for the cosolvent simulations, where the nonpolar probes induced local conformational changes in the protein that lead to the opening of transient pockets. In addition, the selection of the ligands based on a combination of the binding free energy and binding free energy gap between the best two poses for each ligand provided more suitable binders than the selection of ligands based solely on one of the criteria. The application of cosolvent molecular dynamics to enhance the sampling of the configurational space is expected to improve the efficacy of virtual screening campaigns of future drug discovery projects.

摘要

虚拟筛选项目中构象采样的缺乏可能导致效率低下,因为许多潜在药物在静态对接模拟过程中可能无法与靶蛋白结合。在这里,我们针对严重急性呼吸综合征冠状病毒 2(SARS-CoV-2)的 RNA 依赖性 RNA 聚合酶(RdRp)蛋白这一靶标,对大约 2000 种美国食品和药物管理局(FDA)批准的药物进行了集合对接。代表性的蛋白质结构是通过对经典分子动力学轨迹进行聚类生成的,这些轨迹是在三种溶剂情景下进化的,即纯水、苯/水和苯酚/水混合物。在理论模型中引入动态效应,提高了对接结果,表现在蛋白质中强结合物和结合部位的数量增加。一些发现的口袋仅存在于共溶剂模拟中,其中非极性探针在蛋白质中诱导局部构象变化,导致瞬时口袋的打开。此外,基于结合自由能和每个配体的两个最佳构象之间的结合自由能间隙的组合选择配体,比仅基于一个标准选择配体提供了更合适的配体。预计将共溶剂分子动力学应用于增强构象空间的采样,将提高未来药物发现项目虚拟筛选活动的效果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1a08/8659376/44d453b9ed59/ci1c00924_0002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验