Neuroscience, Ottawa Hospital Research Institute, Ottawa, Canada.
Center for Neural Dynamics, University of Ottawa, Ottawa, Canada.
J Gen Physiol. 2022 Jan 3;154(1). doi: 10.1085/jgp.202112914. Epub 2021 Nov 3.
Duchenne muscular dystrophy (DMD) is an X-linked dystrophin-minus muscle-wasting disease. Ion homeostasis in skeletal muscle fibers underperforms as DMD progresses. But though DMD renders these excitable cells intolerant of exertion, sodium overloaded, depolarized, and spontaneously contractile, they can survive for several decades. We show computationally that underpinning this longevity is a strikingly frugal, robust Pump-Leak/Donnan (P-L/D) ion homeostatic process. Unlike neurons, which operate with a costly "Pump-Leak-dominated" ion homeostatic steady state, skeletal muscle fibers operate with a low-cost "Donnan-dominated" ion homeostatic steady state that combines a large chloride permeability with an exceptionally small sodium permeability. Simultaneously, this combination keeps fiber excitability low and minimizes pump expenditures. As mechanically active, long-lived multinucleate cells, skeletal muscle fibers have evolved to handle overexertion, sarcolemmal tears, ischemic bouts, etc.; the frugality of their Donnan dominated steady state lets them maintain the outsized pump reserves that make them resilient during these inevitable transient emergencies. Here, P-L/D model variants challenged with DMD-type insult/injury (low pump-strength, overstimulation, leaky Nav and cation channels) show how chronic "nonosmotic" sodium overload (observed in DMD patients) develops. Profoundly severe DMD ion homeostatic insult/injury causes spontaneous firing (and, consequently, unwanted excitation-contraction coupling) that elicits cytotoxic swelling. Therefore, boosting operational pump-strength and/or diminishing sodium and cation channel leaks should help extend DMD fiber longevity.
杜氏肌营养不良症(DMD)是一种 X 连锁的肌营养不良症,肌肉逐渐退化。随着 DMD 的进展,骨骼肌纤维的离子稳态失衡。尽管 DMD 使这些兴奋性细胞无法耐受运动,但由于钠离子过载、去极化和自发性收缩,它们仍能存活数十年。我们通过计算表明,这种长寿的基础是一种惊人的节俭、稳健的泵-漏/唐纳(P-L/D)离子稳态过程。与神经元不同,神经元以代价高昂的“泵主导”离子稳态为特征,骨骼肌纤维以低成本的“唐纳主导”离子稳态为特征,这种稳态结合了大的氯离子通透性和异常小的钠离子通透性。同时,这种组合使纤维兴奋性降低,并最大限度地减少泵的支出。作为机械活跃、寿命长的多核细胞,骨骼肌纤维已经进化到可以处理过度劳累、肌膜撕裂、缺血发作等情况;它们唐纳主导稳态的节俭性使它们在这些不可避免的短暂紧急情况下保持巨大的泵储备,从而具有弹性。在这里,受到 DMD 型损伤/损伤(低泵强度、过度刺激、渗漏的 Nav 和阳离子通道)挑战的 P-L/D 模型变体展示了慢性“非渗透性”钠离子过载(在 DMD 患者中观察到)是如何发展的。严重的 DMD 离子稳态损伤会导致自发性放电(进而引起不必要的兴奋-收缩耦联),从而引发细胞毒性肿胀。因此,提高操作泵强度和/或减少钠离子和阳离子通道泄漏应该有助于延长 DMD 纤维的寿命。