Donnelly Centre, University of Toronto, Toronto, ON M5S3E1, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S3G9, Canada.
Department of Neuroscience, University of Padua, Padua, 35128, Italy.
Acta Biomater. 2021 Sep 15;132:227-244. doi: 10.1016/j.actbio.2021.05.020. Epub 2021 May 25.
The biological basis of Duchenne muscular dystrophy (DMD) pathology is only partially characterized and there are still few disease-modifying therapies available, therein underlying the value of strategies to model and study DMD. Dystrophin, the causative gene of DMD, is responsible for linking the cytoskeleton of muscle fibers to the extracellular matrix beyond the sarcolemma. We posited that disease-associated phenotypes not yet captured by two-dimensional culture methods would arise by generating multinucleated muscle cells within a three-dimensional (3D) extracellular matrix environment. Herein we report methods to produce 3D human skeletal muscle microtissues (hMMTs) using clonal, immortalized myoblast lines established from healthy and DMD donors. We also established protocols to evaluate immortalized hMMT self-organization and myotube maturation, as well as calcium handling, force generation, membrane stability (i.e., creatine kinase activity and Evans blue dye permeability) and contractile apparatus organization following electrical-stimulation. In examining hMMTs generated with a cell line wherein the dystrophin gene possessed a duplication of exon 2, we observed rare dystrophin-positive myotubes, which were not seen in 2D cultures. Further, we show that treating DMD hMMTs with a β1-integrin activating antibody, improves contractile apparatus maturation and stability. Hence, immortalized myoblast-derived DMD hMMTs offer a pre-clinical system with which to investigate the potential of duplicated exon skipping strategies and those that protect muscle cells from contraction-induced injury. STATEMENT OF SIGNIFICANCE: Duchenne muscular dystrophy (DMD) is a progressive muscle-wasting disorder that is caused by mutation of the dystrophin gene. The biological basis of DMD pathology is only partially characterized and there is no cure for this fatal disease. Here we report a method to produce 3D human skeletal muscle microtissues (hMMTs) using immortalized human DMD and healthy myoblasts. Morphological and functional assessment revealed DMD-associated pathophysiology including impaired calcium handling and de novo formation of dystrophin-positive revertant muscle cells in immortalized DMD hMMTs harbouring an exon 2 duplication, a feature of many DMD patients that has not been recapitulated in culture prior to this report. We further demonstrate that this "DMD in a dish" system can be used as a pre-clinical assay to test a putative DMD therapeutic and study the mechanism of action.
杜兴氏肌肉营养不良症(DMD)的病理生物学基础仅部分得到描述,并且可用的疾病修饰疗法仍然很少,因此,建立模型和研究 DMD 的策略具有重要价值。DMD 的致病基因肌营养不良蛋白负责将肌肉纤维的细胞骨架与细胞膜以外的细胞外基质连接起来。我们假设,通过在三维(3D)细胞外基质环境中生成多核肌肉细胞,二维培养方法尚未捕获的疾病相关表型将会出现。在此,我们报告了使用从健康和 DMD 供体中建立的克隆性、永生化成肌细胞系生成 3D 人骨骼肌微组织(hMMT)的方法。我们还建立了评估永生化 hMMT 自组织和肌管成熟以及钙处理、力生成、膜稳定性(即肌酸激酶活性和 Evans 蓝染料通透性)和电刺激后收缩装置组织的方案。在检查使用肌营养不良蛋白基因具有外显子 2 重复的细胞系生成的 hMMT 时,我们观察到罕见的肌营养不良蛋白阳性肌管,而在 2D 培养物中未观察到。此外,我们表明,用β1 整联蛋白激活抗体处理 DMD hMMT 可改善收缩装置成熟和稳定性。因此,永生化成肌细胞衍生的 DMD hMMT 提供了一个临床前系统,可用于研究重复外显子跳跃策略和那些保护肌肉细胞免受收缩诱导损伤的策略的潜力。意义声明:杜兴氏肌肉营养不良症(DMD)是一种进行性肌肉消耗性疾病,由肌营养不良蛋白基因突变引起。DMD 病理生物学的基础仅部分得到描述,并且这种致命疾病尚无治愈方法。在这里,我们报告了一种使用永生化人 DMD 和健康成肌细胞生成 3D 人骨骼肌微组织(hMMT)的方法。形态和功能评估显示了 DMD 相关的病理生理学,包括钙处理受损和在携带外显子 2 重复的永生化 DMD hMMT 中重新形成的肌营养不良蛋白阳性回复肌管,这是许多 DMD 患者的特征,在此之前,这种特征尚未在培养物中重现。我们进一步证明,这个“DMD 盘中系统”可用作临床前测定,以测试潜在的 DMD 治疗方法并研究其作用机制。