Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zürich, Zürich 8057, Switzerland.
Institute for Biomedical Engineering, Faculty of Medicine, University of Zürich, Zürich 8057, Switzerland.
Proc Natl Acad Sci U S A. 2021 Nov 9;118(45). doi: 10.1073/pnas.2103979118.
Propagation of electromechanical waves in excitable heart muscles follows complex spatiotemporal patterns holding the key to understanding life-threatening arrhythmias and other cardiac conditions. Accurate volumetric mapping of cardiac wave propagation is currently hampered by fast heart motion, particularly in small model organisms. Here we demonstrate that ultrafast four-dimensional imaging of cardiac mechanical wave propagation in entire beating murine heart can be accomplished by sparse optoacoustic sensing with high contrast, ∼115-µm spatial and submillisecond temporal resolution. We extract accurate dispersion and phase velocity maps of the cardiac waves and reveal vortex-like patterns associated with mechanical phase singularities that occur during arrhythmic events induced via burst ventricular electric stimulation. The newly introduced cardiac mapping approach is a bold step toward deciphering the complex mechanisms underlying cardiac arrhythmias and enabling precise therapeutic interventions.
机电波在兴奋心肌中的传播遵循复杂的时空模式,这是理解危及生命的心律失常和其他心脏疾病的关键。目前,由于心脏运动速度快,特别是在小型模型生物中,心脏波传播的精确容积映射受到阻碍。在这里,我们证明了稀疏光声感应具有高对比度,可实现整个跳动的小鼠心脏机械波传播的超快四维成像,空间分辨率约为 115µm,时间分辨率为亚毫秒级。我们提取了心脏波的精确频散和相速度图,并揭示了与机械相位奇点相关的类涡旋模式,这些奇点发生在通过心室电刺激爆发诱导的心律失常事件期间。新引入的心脏映射方法是朝着破译心律失常背后的复杂机制迈出的大胆一步,并能够实现精确的治疗干预。