Department of Biomedical Engineering, University of Houston, Houston, TX, 77004, USA.
Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Zurich, 8057, Switzerland.
Adv Sci (Weinh). 2024 Jun;11(22):e2400089. doi: 10.1002/advs.202400089. Epub 2024 Mar 25.
Noninvasive monitoring of cardiac development can potentially prevent cardiac anomalies in adulthood. Mouse models provide unique opportunities to study cardiac development and disease in mammals. However, high-resolution noninvasive functional analyses of murine embryonic cardiac models are challenging because of the small size and fast volumetric motion of the embryonic heart, which is deeply embedded inside the uterus. In this study, a real time volumetric optoacoustic spectroscopy (VOS) platform for whole-heart visualization with high spatial (100 µm) and temporal (10 ms) resolutions is developed. Embryonic heart development on gestational days (GDs) 14.5-17.5 and quantify cardiac dynamics using time-lapse-4D image data of the heart is followed. Additionally, spectroscopic recordings enable the quantification of the blood oxygenation status in heart chambers in a label-free and noninvasive manner. This technology introduces new possibilities for high-resolution quantification of embryonic heart function at different gestational stages in mammalian models, offering an invaluable noninvasive method for developmental biology.
非侵入性的心脏发育监测有可能预防成年后的心脏异常。小鼠模型为研究哺乳动物的心脏发育和疾病提供了独特的机会。然而,由于胚胎心脏的体积小且快速运动,以及它深深嵌入子宫内,因此对鼠类胚胎心脏模型进行高分辨率的非侵入性功能分析具有挑战性。在这项研究中,开发了一种实时体积光声光谱(VOS)平台,可进行高空间(100μm)和时间(10ms)分辨率的全心可视化。对孕 14.5-17.5 天的胚胎心脏发育进行了研究,并通过心脏的时移 4D 图像数据来定量心脏动力学。此外,光谱记录可实现对心脏腔室内血氧状态的无标记和非侵入性定量。这项技术为在哺乳动物模型中对不同孕龄阶段的胚胎心脏功能进行高分辨率定量提供了新的可能性,为发育生物学提供了一种非常有价值的非侵入性方法。