Suppr超能文献

伴有可电击心律的院外心脏骤停患者的临床表型分析——基于机器学习的无监督聚类分析

Clinical Phenotyping of Out-of-Hospital Cardiac Arrest Patients With Shockable Rhythm - Machine Learning-Based Unsupervised Cluster Analysis.

作者信息

Okada Yohei, Komukai Sho, Kitamura Tetsuhisa, Kiguchi Takeyuki, Irisawa Taro, Yamada Tomoki, Yoshiya Kazuhisa, Park Changhwi, Nishimura Tetsuro, Ishibe Takuya, Yagi Yoshiki, Kishimoto Masafumi, Inoue Toshiya, Hayashi Yasuyuki, Sogabe Taku, Morooka Takaya, Sakamoto Haruko, Suzuki Keitaro, Nakamura Fumiko, Matsuyama Tasuku, Nishioka Norihiro, Kobayashi Daisuke, Matsui Satoshi, Hirayama Atsushi, Yoshimura Satoshi, Kimata Shunsuke, Shimazu Takeshi, Ohtsuru Shigeru, Iwami Taku

机构信息

Department of Preventive Services, School of Public Health, Kyoto University.

Department of Primary Care and Emergency Medicine, Graduate School of Medicine, Kyoto University.

出版信息

Circ J. 2022 Mar 25;86(4):668-676. doi: 10.1253/circj.CJ-21-0675. Epub 2021 Nov 2.

Abstract

BACKGROUND

The hypothesis of this study is that latent class analysis could identify the subphenotypes of out-of-hospital cardiac arrest (OHCA) patients associated with the outcomes and allow us to explore heterogeneity in the effects of extracorporeal cardiopulmonary resuscitation (ECPR).

METHODS AND RESULTS

This study was a retrospective analysis of a multicenter prospective observational study (CRITICAL study) of OHCA patients. It included adult OHCA patients with initial shockable rhythm. Patients from 2012 to 2016 (development dataset) were included in the latent class analysis, and those from 2017 (validation dataset) were included for evaluation. The association between subphenotypes and outcomes was investigated. Further, the heterogeneity of the association between ECPR implementation and outcomes was explored. In the study results, a total of 920 patients were included for latent class analysis. Three subphenotypes (Groups 1, 2, and 3) were identified, mainly characterized by the distribution of partial pressure of O(PO), partial pressure of CO(PCO) value of blood gas assessment, cardiac rhythm on hospital arrival, and estimated glomerular filtration rate. The 30-day survival outcomes were varied across the groups: 15.7% in Group 1; 30.7% in Group 2; and 85.9% in Group 3. Further, the association between ECPR and 30-day survival outcomes by subphenotype groups in the development dataset was as varied. These results were validated using the validation dataset.

CONCLUSIONS

The latent class analysis identified 3 subphenotypes with different survival outcomes and potential heterogeneity in the effects of ECPR.

摘要

背景

本研究的假设是,潜在类别分析可以识别与院外心脏骤停(OHCA)患者预后相关的亚表型,并使我们能够探索体外心肺复苏(ECPR)效果的异质性。

方法与结果

本研究是对OHCA患者的一项多中心前瞻性观察性研究(CRITICAL研究)的回顾性分析。纳入了初始可电击心律的成年OHCA患者。2012年至2016年的患者(开发数据集)纳入潜在类别分析,2017年的患者(验证数据集)纳入进行评估。研究了亚表型与预后之间的关联。此外,还探讨了ECPR实施与预后之间关联的异质性。在研究结果中,共有920例患者纳入潜在类别分析。识别出三种亚表型(第1、2和3组),主要特征为血气评估的氧分压(PO)、二氧化碳分压(PCO)值分布、入院时的心律以及估计肾小球滤过率。各组的30天生存结局各不相同:第1组为15.7%;第2组为30.7%;第3组为85.9%。此外,开发数据集中亚表型组的ECPR与30天生存结局之间的关联也各不相同。这些结果在验证数据集中得到了验证。

结论

潜在类别分析识别出了三种具有不同生存结局且ECPR效果存在潜在异质性的亚表型。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验