Suppr超能文献

用于识别预测院外心脏骤停患者住院预后亚表型的潜在类别分析。

Latent class analysis for identification of sub-phenotypes predicting prognosis in hospitalized out-of-hospital cardiac arrest.

作者信息

Kishihara Yuki, Yasuda Hideto, Kashiura Masahiro, Amagasa Shunsuke, Tamura Hiroyuki, Shinzato Yutaro, Moriya Takashi

机构信息

Department of Emergency and Critical Care Medicine, Jichi Medical University Saitama Medical Center, Saitama, Japan.

School of Nursing and Midwifery; Alliance for Vascular Access Teaching and Research, Griffith University, Australia.

出版信息

J Crit Care Med (Targu Mures). 2025 Apr 30;11(2):183-191. doi: 10.2478/jccm-2025-0016. eCollection 2025 Apr.

Abstract

AIM OF THE STUDY

To determine which out-of-hospital cardiac arrest (OHCA) patients should receive advanced treatment is extremely challenging. The objective was to identify sub-phenotypes predicting the prognoses of adult OHCA patients by latent class analysis (LCA) using data up to just after admission.

MATERIAL AND METHODS

We conducted a retrospective observational study using multicentre OHCA registry from 95 Japanese hospitals including adult non-traumatic hospitalized OHCA. The primary outcome was 30-day favourable neurological outcome. Our LCA used clinically relevant variables up to just after admission and the optimal class number was determined from clinical importance and Bayesian information criterion. The associations between subphenotypes and outcomes were analysed using univariate logistic regression analysis with odds ratios (ORs) and 95% confidence intervals (CIs).

RESULTS

Our LCA included 2,162 patients and identified four sub-phenotypes. The base excess on hospital arrival had the highest discriminative power. Thirty-day favourable neurological outcomes were observed in 526 patients (24.3%), including 284 (53.8%) in Group 1, 179 (21.2%) in Group 2, 26 (11.4%) in Group 3, and 37 (6.6%) in Group 4. Prehospital return of spontaneous circulation (ROSC) was achieved in 1,009 patients (46.7%), including 379 (81.8%) in Group 1, 340 (40.3%) in Group 2, 115 (50.4%) in Group 3, and 175 (31.1%) in Group 4. Univariate logistic regression analysis for primary outcome using Group 4 as reference revealed ORs (95% CI) of 16.5 (11.4-24.1) in Group 1, 3.83 (2.64-5.56) in Group 2, and 1.83 (1.08-3.10) in Group 3.

CONCLUSIONS

Our LCA classified OHCA into four sub-phenotypes showing significant differences for prognosis. In cases who achieved prehospital ROSC, it might be meaningful to continue advanced therapeutic interventions.

摘要

研究目的

确定哪些院外心脏骤停(OHCA)患者应接受高级治疗极具挑战性。目的是通过潜在类别分析(LCA),利用入院后即刻的数据识别预测成年OHCA患者预后的亚表型。

材料与方法

我们使用来自95家日本医院的多中心OHCA登记处进行了一项回顾性观察研究,包括成年非创伤性住院OHCA患者。主要结局是30天良好神经功能结局。我们的LCA使用入院后即刻的临床相关变量,并根据临床重要性和贝叶斯信息准则确定最佳类别数。使用单因素逻辑回归分析及比值比(OR)和95%置信区间(CI)分析亚表型与结局之间的关联。

结果

我们的LCA纳入了2162例患者,并识别出四种亚表型。入院时的碱剩余具有最高的鉴别力。526例患者(24.3%)观察到30天良好神经功能结局,其中第1组284例(53.8%),第2组179例(21.2%),第3组26例(11.4%),第4组37例(6.6%)。1009例患者(46.7%)实现了院前自主循环恢复(ROSC),其中第1组379例(81.8%),第2组340例(40.3%),第3组115例(50.4%),第4组175例(31.1%)。以第4组为参照对主要结局进行单因素逻辑回归分析显示,第1组的OR(95%CI)为16.5(11.4 - 24.1),第2组为3.83(2.64 - 5.56),第3组为1.83(1.08 - 3.10)。

结论

我们的LCA将OHCA分为四种亚表型,其预后存在显著差异。在实现院前ROSC的病例中,继续进行高级治疗干预可能是有意义的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/92a5/12080534/411560732417/j_jccm-2025-0016_fig_001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验