Department of Systems Design Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada.
Centre for Bioengineering and Biotechnology, University of Waterloo, Waterloo, ON, Canada.
Sci Rep. 2021 Nov 3;11(1):21545. doi: 10.1038/s41598-021-00905-3.
Understanding and predicting metastatic progression and developing novel diagnostic methods can highly benefit from accurate models of the deformability of cancer cells. Spring-based network models of cells can provide a versatile way of integrating deforming cancer cells with other physical and biochemical phenomena, but these models have parameters that need to be accurately identified. In this study we established a systematic method for identifying parameters of spring-network models of cancer cells. We developed a genetic algorithm and coupled it to the fluid-solid interaction model of the cell, immersed in blood plasma or other fluids, to minimize the difference between numerical and experimental data of cell motion and deformation. We used the method to create a validated model for the human lung cancer cell line (H1975), employing existing experimental data of its deformation in a narrow microchannel constriction considering cell-wall friction. Furthermore, using this validated model with accurately identified parameters, we studied the details of motion and deformation of the cancer cell in the microchannel constriction and the effects of flow rates on them. We found that ignoring the viscosity of the cell membrane and the friction between the cell and wall can introduce remarkable errors.
理解和预测转移性进展并开发新的诊断方法,可以从准确的癌细胞可变形性模型中获得极大的益处。基于弹簧的细胞网络模型可以为将变形癌细胞与其他物理和生化现象结合提供一种通用的方法,但这些模型的参数需要准确识别。在这项研究中,我们建立了一种系统的方法来识别癌细胞弹簧网络模型的参数。我们开发了一种遗传算法,并将其与细胞的流固耦合模型相耦合,该模型浸没在血浆或其他流体中,以最小化细胞运动和变形的数值和实验数据之间的差异。我们使用该方法创建了一个经过验证的人肺癌细胞系(H1975)模型,该模型考虑了细胞壁摩擦,利用现有关于其在狭窄微通道收缩处变形的实验数据进行了验证。此外,使用具有准确识别参数的经过验证的模型,我们研究了癌细胞在微通道收缩处的运动和变形的细节,以及流速对它们的影响。我们发现忽略细胞膜的粘度和细胞与壁之间的摩擦会引入显著的误差。