Laboratoire Charles Coulomb (L2C), CNRS - Université Montpellier, Montpellier, France.
Departamento de Física, Universidad Simón Bolívar, Caracas, Venezuela.
Nature. 2021 Nov;599(7883):62-66. doi: 10.1038/s41586-021-03918-0. Epub 2021 Nov 3.
Amorphous-amorphous transformations under pressure are generally explained by changes in the local structure from low- to higher-fold coordinated polyhedra. However, as the notion of scale invariance at the critical thresholds has not been addressed, it is still unclear whether these transformations behave similarly to true phase transitions in related crystals and liquids. Here we report ab initio-based calculations of compressed silica (SiO) glasses, showing that the structural changes from low- to high-density amorphous structures occur through a sequence of percolation transitions. When the pressure is increased to 82 GPa, a series of long-range ('infinite') percolating clusters composed of corner- or edge-shared tetrahedra, pentahedra and eventually octahedra emerge at critical pressures and replace the previous 'phase' of lower-fold coordinated polyhedra and lower connectivity. This mechanism provides a natural explanation for the well-known mechanical anomaly around 3 GPa, as well as the structural irreversibility beyond 10 GPa, among other features. Some of the amorphous structures that have been discovered mimic those of coesite IV and V crystals reported recently, highlighting the major role of SiO pentahedron-based polyamorphs in the densification process of vitreous silica. Our results demonstrate that percolation theory provides a robust framework to understand the nature and pathway of amorphous-amorphous transformations and open a new avenue to predict unravelled amorphous solid states and related liquid phases.
无定形-无定形转变通常可通过从低配位多面体到高配位多面体的局部结构变化来解释。然而,由于尚未涉及临界点处的标度不变性概念,因此仍不清楚这些转变是否与相关晶体和液体中的真正相变相似。在这里,我们报告了基于第一性原理的压缩二氧化硅(SiO)玻璃的计算结果,表明从低密度无定形结构到高密度无定形结构的结构变化是通过一系列渗流转变发生的。当压力增加到 82 GPa 时,一系列由顶角或边缘共享的四面体、五面体和最终的八面体组成的长程(“无限”)渗流簇在临界压力下出现,并取代了先前低配位多面体和低连接性的“相”。这种机制为众所周知的约 3 GPa 处的力学异常以及超过 10 GPa 后的结构不可逆性以及其他特征提供了自然的解释。一些已发现的无定形结构类似于最近报道的 Coesite IV 和 V 晶体的结构,突出了基于 SiO 五面体的多形体在玻璃态二氧化硅致密化过程中的主要作用。我们的结果表明,渗流理论为理解无定形-无定形转变的性质和途径提供了一个稳健的框架,并为预测解开的无定形固体状态和相关液相开辟了新途径。