Suppr超能文献

通过对齐叶绿素和浊度算法,利用高分辨率和中分辨率哨兵传感器进行补充水质观测。

Complementary water quality observations from high and medium resolution Sentinel sensors by aligning chlorophyll- and turbidity algorithms.

作者信息

Warren Mark A, Simis Stefan G H, Selmes Nick

机构信息

Plymouth Marine Laboratory, Plymouth PL1 3DH, UK.

出版信息

Remote Sens Environ. 2021 Nov;265:112651. doi: 10.1016/j.rse.2021.112651.

Abstract

High resolution imaging spectrometers are prerequisite to address significant data gaps in inland optical water quality monitoring. In this work, we provide a data-driven alignment of chlorophyll- and turbidity derived from the Sentinel-2 MultiSpectral Imager (MSI) with corresponding Sentinel-3 Ocean and Land Colour Instrument (OLCI) products. For chlorophyll- retrieval, empirical 'ocean colour' blue-green band ratios and a near infra-red (NIR) band ratio algorithm, as well as a semi-analytical three-band NIR-red ratio algorithm, were included in the analysis. Six million co-registrations with MSI and OLCI spanning 24 lakes across five continents were analysed. Following atmospheric correction with POLYMER, the reflectance distributions of the red and NIR bands showed close similarity between the two sensors, whereas the distribution for blue and green bands was positively skewed in the MSI results compared to OLCI. Whilst it is not possible from this analysis to determine the accuracy of reflectance retrieved with either MSI or OLCI results, optimizing water quality algorithms for MSI against those previously derived for the Envisat Medium Resolution Imaging Spectrometer (MERIS) and its follow-on OLCI, supports the wider use of MSI for aquatic applications. Chlorophyll- algorithms were thus tuned for MSI against concurrent OLCI observations, resulting in significant improvements against the original algorithm coefficients. The mean absolute difference (MAD) for the blue-green band ratio algorithm decreased from 1.95 mg m to 1.11 mg m, whilst the correlation coefficient increased from 0.61 to 0.80. For the NIR-red band ratio algorithms improvements were modest, with the MAD decreasing from 4.68 to 4.64 mg m for the empirical red band ratio algorithm, and 3.73 to 3.67 for the semi-analytical 3-band algorithm. Three implementations of the turbidity algorithm showed improvement after tuning with the resulting distributions having reduced bias. The MAD reduced from 0.85 to 0.72, 1.22 to 1.10 and 1.93 to 1.55 FNU for the 665, 708 and 778 nm implementations respectively. However, several sources of uncertainty remain: adjacent land showed high divergence between the sensors, suggesting that high product uncertainty near land continues to be an issue for small water bodies, while it cannot be stated at this point whether MSI or OLCI results are differentially affected. The effect of spectrally wider bands of the MSI on algorithm sensitivity to chlorophyll- and turbidity cannot be fully established without further availability of in situ optical measurements.

摘要

高分辨率成像光谱仪是解决内陆光学水质监测中重大数据缺口的先决条件。在这项工作中,我们对哨兵 -2 多光谱成像仪(MSI)获取的叶绿素和浊度数据与相应的哨兵 -3 海洋和陆地颜色仪器(OLCI)产品进行了数据驱动的比对。对于叶绿素反演,分析中纳入了经验性的“海洋颜色”蓝绿波段比值、近红外(NIR)波段比值算法以及半解析三波段近红外 - 红波段比值算法。分析了横跨五大洲 24 个湖泊的 600 万个 MSI 和 OLCI 共配准数据。在用 POLYMER 进行大气校正后,红色和近红外波段的反射率分布在两个传感器之间显示出密切的相似性,而蓝色和绿色波段的分布在 MSI 结果中相对于 OLCI 呈正偏态。虽然从该分析中无法确定用 MSI 或 OLCI 结果反演的反射率的准确性,但针对先前为 Envisat 中分辨率成像光谱仪(MERIS)及其后续的 OLCI 推导的算法,对 MSI 的水质算法进行优化,支持了 MSI 在水生应用中的更广泛使用。因此,针对 MSI 根据同步的 OLCI 观测对叶绿素算法进行了调整,相对于原始算法系数有了显著改进。蓝绿波段比值算法的平均绝对差(MAD)从 1.95 mg/m 降至 1.11 mg/m,而相关系数从 0.61 增至 0.80。对于近红外 - 红波段比值算法,改进较为适度,经验性红波段比值算法的 MAD 从 4.68 降至 4.64 mg/m,半解析三波段算法从 3.73 降至 3.67 mg/m。浊度算法的三种实现方式在调整后显示出改进,所得分布的偏差减小。对于 665、708 和 778 nm 实现方式,MAD 分别从 0.85 降至 0.72、1.22 降至 1.10 和 1.93 降至 1.55 FNU。然而,仍存在几个不确定性来源:相邻陆地在传感器之间显示出高度差异,这表明靠近陆地的高产品不确定性对于小水体仍然是一个问题,而此时无法确定 MSI 或 OLCI 结果是否受到不同影响。在没有进一步的现场光学测量数据的情况下,无法完全确定 MSI 更宽光谱波段对叶绿素和浊度算法灵敏度的影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b4bf/8507437/77cb8d6bbad4/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验