Suppr超能文献

增强短抗菌肽与传统抗生素对耐药菌的协同作用。

Boosting Synergistic Effects of Short Antimicrobial Peptides With Conventional Antibiotics Against Resistant Bacteria.

作者信息

Wu Chih-Lung, Peng Kuang-Li, Yip Bak-Sau, Chih Ya-Han, Cheng Jya-Wei

机构信息

Department of Medical Science, Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan.

Department of Neurology, National Taiwan University Hospital Hsinchu Branch, Hsinchu, Taiwan.

出版信息

Front Microbiol. 2021 Oct 18;12:747760. doi: 10.3389/fmicb.2021.747760. eCollection 2021.

Abstract

The global spread of antibiotic-resistant infections has meant that there is an urgent need to develop new antimicrobial alternatives. In this study, we developed a strategy to boost and/or synergize the activity of conventional antibiotics by combination with antimicrobial peptides tagged with the bulky non-natural amino acid β-naphthylalanine (Nal) to their N- or C-terminus. A checkerboard method was used to evaluate synergistic effects of the parent peptide and the Nal-tagged peptides. Moreover, boron-dipyrro-methene labeled vancomycin was used to characterize the synergistic mechanism of action between the peptides and vancomycin on the bacterial strains. These Nal-tagged antimicrobial peptides also reduced the antibiotic-induced release of lipopolysaccharide from Gram-negative bacteria by more than 99.95%. Our results demonstrate that Nal-tagged peptides could help in developing antimicrobial peptides that not only have enhanced antibacterial activities but also increase the synergistic effects with conventional antibiotics against antibiotic-resistant bacteria.

摘要

抗生素耐药性感染的全球传播意味着迫切需要开发新的抗菌替代物。在本研究中,我们制定了一种策略,通过将标记有庞大的非天然氨基酸β-萘丙氨酸(Nal)的抗菌肽与常规抗生素的N端或C端相结合,来增强和/或协同常规抗生素的活性。采用棋盘法评估亲本肽和Nal标记肽的协同效应。此外,用硼二吡咯亚甲基标记的万古霉素来表征肽与万古霉素在细菌菌株上的协同作用机制。这些Nal标记的抗菌肽还使革兰氏阴性菌中抗生素诱导的脂多糖释放减少了99.95%以上。我们的结果表明,Nal标记的肽有助于开发不仅具有增强抗菌活性,而且能增加与常规抗生素对耐药菌协同效应的抗菌肽。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6190/8558513/674c4bb1469a/fmicb-12-747760-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验