Suppr超能文献

块茎在地上和地下部分的发育受光周期和表观遗传机制的控制。

Development of aerial and belowground tubers in potato is governed by photoperiod and epigenetic mechanism.

机构信息

Biology Division, Indian Institute of Science Education and Research (IISER) Pune, Pune 411008, Maharashtra, India.

Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune 411008, Maharashtra, India.

出版信息

Plant Physiol. 2021 Nov 3;187(3):1071-1086. doi: 10.1093/plphys/kiab409.

Abstract

Plants exhibit diverse developmental plasticity and modulate growth responses under various environmental conditions. Potato (Solanum tuberosum), a modified stem and an important food crop, serves as a substantial portion of the world's subsistence food supply. In the past two decades, crucial molecular signals have been identified that govern the tuberization (potato development) mechanism. Interestingly, microRNA156 overexpression in potato provided the first evidence for induction of profuse aerial stolons and tubers from axillary meristems under short-day (SD) photoperiod. A similar phenotype was noticed for overexpression of epigenetic modifiers-MUTICOPY SUPRESSOR OF IRA1 (StMSI1) or ENAHNCER OF ZESTE 2 (StE[z]2), and knockdown of B-CELL-SPECIFIC MOLONEY MURINE LEUKEMIA VIRUS INTEGRATION SITE 1 (StBMI1). This striking phenotype represents a classic example of modulation of plant architecture and developmental plasticity. Differentiation of a stolon to a tuber or a shoot under in vitro or in vivo conditions symbolizes another example of organ-level plasticity and dual fate acquisition in potato. Stolon-to-tuber transition is governed by SD photoperiod, mobile RNAs/proteins, phytohormones, a plethora of small RNAs and their targets. Recent studies show that polycomb group proteins control microRNA156, phytohormone metabolism/transport/signaling and key tuberization genes through histone modifications to govern tuber development. Our comparative analysis of differentially expressed genes between the overexpression lines of StMSI1, StBEL5 (BEL1-LIKE transcription factor [TF]), and POTATO HOMEOBOX 15 TF revealed more than 1,000 common genes, indicative of a mutual gene regulatory network potentially involved in the formation of aerial and belowground tubers. In this review, in addition to key tuberization factors, we highlight the role of photoperiod and epigenetic mechanism that regulates the development of aerial and belowground tubers in potato.

摘要

植物表现出多样的发育可塑性,并在各种环境条件下调节生长反应。马铃薯(Solanum tuberosum)是一种经过改良的茎,也是一种重要的粮食作物,是世界上大部分维持生计的食物来源。在过去的二十年中,已经确定了控制块茎形成(马铃薯发育)机制的关键分子信号。有趣的是,马铃薯中 microRNA156 的过表达提供了第一个证据,证明在短日照(SD)光周期下,从腋芽分生组织诱导大量气生匍匐茎和块茎。过表达表观遗传修饰物-MUTICOPY SUPRESSOR OF IRA1(StMSI1)或 ENAHNCER OF ZESTE 2(StE[z]2)或下调 B-CELL-SPECIFIC MOLONEY MURINE LEUKEMIA VIRUS INTEGRATION SITE 1(StBMI1)也会出现类似的表型。这种引人注目的表型代表了植物结构和发育可塑性的经典范例。在体外或体内条件下,匍匐茎分化为块茎或芽代表了马铃薯器官水平可塑性和双重命运获得的另一个例子。匍匐茎向块茎的转变受 SD 光周期、移动 RNA/蛋白质、植物激素、大量小 RNA 及其靶标控制。最近的研究表明,多梳组蛋白通过组蛋白修饰控制 microRNA156、植物激素代谢/运输/信号转导和关键块茎形成基因,从而控制块茎发育。我们对 StMSI1、StBEL5(BEL1 样转录因子 [TF])和 POTATO HOMEOBOX 15 TF 过表达系之间差异表达基因的比较分析表明,有 1000 多个共同基因,表明存在一个可能参与气生和地下块茎形成的共同基因调控网络。在这篇综述中,除了关键的块茎形成因子外,我们还强调了光周期和表观遗传机制在调节马铃薯气生和地下块茎发育中的作用。

相似文献

10
Untranslated regions of a mobile transcript mediate RNA metabolism.非翻译区的移动转录本参与 RNA 代谢。
Plant Physiol. 2009 Dec;151(4):1831-43. doi: 10.1104/pp.109.144428. Epub 2009 Sep 25.

引用本文的文献

1
Molecular Mechanisms of Dual Potato Reproduction.马铃薯双重繁殖的分子机制
Physiol Plant. 2025 Jul-Aug;177(4):e70451. doi: 10.1111/ppl.70451.
8
Unlocking epigenetic breeding potential in tomato and potato.挖掘番茄和马铃薯的表观遗传育种潜力。
aBIOTECH. 2024 Oct 23;5(4):507-518. doi: 10.1007/s42994-024-00184-2. eCollection 2024 Dec.

本文引用的文献

6
Carbon partitioning mechanisms in POTATO under drought stress.干旱胁迫下马铃薯的碳分配机制。
Plant Physiol Biochem. 2020 Jan;146:211-219. doi: 10.1016/j.plaphy.2019.11.019. Epub 2019 Nov 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验