Suppr超能文献

用于非水氧化还原液流电池的锂导电复合聚合物-陶瓷膜的合成与表征

Synthesis and Characterization of Lithium-Conducting Composite Polymer-Ceramic Membranes for Use in Nonaqueous Redox Flow Batteries.

作者信息

Ashraf Gandomi Yasser, Krasnikova Irina V, Akhmetov Nikita O, Ovsyannikov Nikolay A, Pogosova Mariam A, Matteucci Nicholas J, Mallia Christopher T, Neyhouse Bertrand J, Fenton Alexis M, Brushett Fikile R, Stevenson Keith J

机构信息

Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.

Center for Electrochemical Energy Storage, Skolkovo Institute of Science and Technology, Moscow 121205, Russian Federation.

出版信息

ACS Appl Mater Interfaces. 2021 Nov 17;13(45):53746-53757. doi: 10.1021/acsami.1c13759. Epub 2021 Nov 4.

Abstract

Redox flow batteries (RFBs) are a burgeoning electrochemical platform for long-duration energy storage, but present embodiments are too expensive for broad adoption. Nonaqueous redox flow batteries (NAqRFBs) seek to reduce system costs by leveraging the large electrochemical stability window of organic solvents (>3 V) to operate at high cell voltages and to facilitate the use of redox couples that are incompatible with aqueous electrolytes. However, a key challenge for emerging nonaqueous chemistries is the lack of membranes/separators with suitable combinations of selectivity, conductivity, and stability. Single-ion conducting ceramics, integrated into a flexible polymer matrix, may offer a pathway to attain performance attributes needed for enabling competitive nonaqueous systems. Here, we explore composite polymer-inorganic binder-filler membranes for lithium-based NAqRFBs, investigating two different ceramic compounds with NASICON-type (NASICON: sodium (Na) superionic conductor) crystal structure, LiAlTi(PO) (LATP) and LiAlGeTi(PO) (LAGTP), each blended with a polyvinylidene fluoride (PVDF) polymeric matrix. We characterize the physicochemical and electrochemical properties of the synthesized membranes as a function of processing conditions and formulation using a range of microscopic and electrochemical techniques. Importantly, the electrochemical stability window of the as-prepared membranes lies between 2.2-4.5 V vs Li/Li. We then integrate select composite membranes into a single electrolyte flow cell configuration and perform polarization measurements with different redox electrolyte compositions. We find that mechanically robust, chemically stable LATP/PVDF composites can support >40 mA cm at 400 mV cell overpotential, but further improvements are needed in selectivity. Overall, the insights gained through this work begin to establish the foundational knowledge needed to advance composite polymer-inorganic membranes/separators for NAqRFBs.

摘要

氧化还原液流电池(RFBs)是一种新兴的用于长时储能的电化学平台,但目前的实施方案成本过高,无法广泛应用。非水系氧化还原液流电池(NAqRFBs)试图通过利用有机溶剂大的电化学稳定窗口(>3V)来降低系统成本,从而在高电池电压下运行,并便于使用与水系电解质不相容的氧化还原对。然而,新兴的非水化学面临的一个关键挑战是缺乏具有选择性、导电性和稳定性合适组合的膜/隔膜。集成到柔性聚合物基体中的单离子传导陶瓷可能提供一条途径,以获得实现具有竞争力的非水体系所需的性能属性。在此,我们探索用于锂基NAqRFBs的复合聚合物-无机粘合剂-填料膜,研究两种具有NASICON型(NASICON:钠(Na)超离子导体)晶体结构的不同陶瓷化合物,LiAlTi(PO)(LATP)和LiAlGeTi(PO)(LAGTP),它们分别与聚偏二氟乙烯(PVDF)聚合物基体共混。我们使用一系列微观和电化学技术,将合成膜的物理化学和电化学性质表征为加工条件和配方的函数。重要的是,所制备膜的电化学稳定窗口相对于Li/Li在2.2 - 4.5V之间。然后,我们将选定的复合膜集成到单电解质液流电池配置中,并使用不同的氧化还原电解质组合物进行极化测量。我们发现,机械坚固、化学稳定的LATP/PVDF复合材料在400mV电池过电位下可支持>40mA cm,但在选择性方面还需要进一步改进。总体而言,通过这项工作获得的见解开始建立推进用于NAqRFBs的复合聚合物-无机膜/隔膜所需的基础知识。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验