Yang Hannah, Tenorio Lopes Luana, Barioni Nicole O, Roeske Jamie, Incognito Anthony V, Baker Jacquie, Raj Satish R, Wilson Richard J A
Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr. N.W., Calgary, AB T2N4N1, Canada.
Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr. N.W., Calgary, AB T2N4N1, Canada.
Cardiovasc Res. 2022 Dec 9;118(15):3052-3070. doi: 10.1093/cvr/cvab334.
The autonomic nervous system maintains homeostasis of cardiovascular, respiratory, gastrointestinal, urinary, immune, and thermoregulatory function. Homeostasis involves a variety of feedback mechanisms involving peripheral afferents, many of which contain molecular receptors sensitive to mechanical deformation, termed mechanosensors. Here, we focus on the molecular identity of mechanosensors involved in the baroreflex control of the cardiovascular system. Located within the walls of the aortic arch and carotid sinuses, and/or astrocytes in the brain, these mechanosensors are essential for the rapid moment-to-moment feedback regulation of blood pressure (BP). Growing evidence suggests that these mechanosensors form a co-existing system of peripheral and central baroreflexes. Despite the importance of these molecules in cardiovascular disease and decades of research, their precise molecular identity remains elusive. The uncertainty surrounding the identity of these mechanosensors presents a major challenge in understanding basic baroreceptor function and has hindered the development of novel therapeutic targets for conditions with known arterial baroreflex impairments. Therefore, the purpose of this review is to (i) provide a brief overview of arterial and central baroreflex control of BP, (ii) review classes of ion channels currently proposed as the baroreflex mechanosensor, namely Transient Receptor Potential (TRP), Epithelial Sodium Channel (ENaC), Acid Sensing Ion Channel (ASIC), and Piezo, along with additional molecular candidates that serve mechanotransduction in other organ systems, and (iii) summarize the potential clinical implications of impaired baroreceptor function in the pathophysiology of cardiovascular disease.
自主神经系统维持心血管、呼吸、胃肠、泌尿、免疫和体温调节功能的稳态。稳态涉及多种反馈机制,这些机制涉及外周传入神经,其中许多含有对机械变形敏感的分子受体,称为机械感受器。在这里,我们重点关注参与心血管系统压力反射控制的机械感受器的分子特性。这些机械感受器位于主动脉弓和颈动脉窦壁内和/或大脑中的星形胶质细胞中,对于血压(BP)的快速实时反馈调节至关重要。越来越多的证据表明,这些机械感受器形成了外周和中枢压力反射的共存系统。尽管这些分子在心血管疾病中很重要且经过了数十年的研究,但其精确的分子特性仍然难以捉摸。这些机械感受器身份的不确定性在理解基本压力感受器功能方面构成了重大挑战,并阻碍了针对已知动脉压力反射受损情况开发新的治疗靶点。因此,本综述的目的是:(i)简要概述血压的动脉和中枢压力反射控制;(ii)综述目前被认为是压力反射机械感受器的离子通道类别,即瞬时受体电位(TRP)、上皮钠通道(ENaC)、酸敏感离子通道(ASIC)和Piezo,以及在其他器官系统中起机械转导作用的其他分子候选物;(iii)总结压力感受器功能受损在心血管疾病病理生理学中的潜在临床意义。