School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA.
Department of Mathematics, University of Utah, Salt Lake City, UT 84112, USA.
Genetics. 2022 Jan 4;220(1). doi: 10.1093/genetics/iyab196.
The clustered regularly interspaced short palindromic repeats (CRISPR)-Cas universe continues to expand. The type II CRISPR-Cas system from Streptococcus pyogenes (SpyCas9) is the most widely used for genome editing due to its high efficiency in cells and organisms. However, concentrating on a single CRISPR-Cas system imposes limits on target selection and multiplexed genome engineering. We hypothesized that CRISPR-Cas systems originating from different bacterial species could operate simultaneously and independently due to their distinct single-guide RNAs (sgRNAs) or CRISPR-RNAs (crRNAs), and protospacer adjacent motifs (PAMs). Additionally, we hypothesized that CRISPR-Cas activity in zebrafish could be regulated through the expression of inhibitory anti-CRISPR (Acr) proteins. Here, we use a simple mutagenesis approach to demonstrate that CRISPR-Cas systems from S. pyogenes (SpyCas9), Streptococcus aureus (SauCas9), Lachnospiraceae bacterium (LbaCas12a, previously known as LbCpf1) are orthogonal systems capable of operating simultaneously in zebrafish. CRISPR systems from Acidaminococcus sp. (AspCas12a, previously known as AsCpf1) and Neisseria meningitidis (Nme2Cas9) were also active in embryos. We implemented multichannel CRISPR recording using three CRISPR systems and show that LbaCas12a may provide superior information density compared with previous methods. We also demonstrate that type II Acrs (anti-CRISPRs) are effective inhibitors of SpyCas9 in zebrafish. Our results indicate that at least five CRISPR-Cas systems and two anti-CRISPR proteins are functional in zebrafish embryos. These orthogonal CRISPR-Cas systems and Acr proteins will enable combinatorial and intersectional strategies for spatiotemporal control of genome editing and genetic recording in animals.
成簇规律间隔短回文重复序列(CRISPR)-Cas 系统不断发展。来自酿脓链球菌(SpyCas9)的 II 型 CRISPR-Cas 系统由于其在细胞和生物体中的高效率,是最常用于基因组编辑的系统。然而,专注于单个 CRISPR-Cas 系统会限制靶标选择和多路基因组工程。我们假设来自不同细菌物种的 CRISPR-Cas 系统可以由于其独特的单指导 RNA(sgRNA)或 CRISPR-RNA(crRNA)和间隔区临近基序(PAM)而同时独立地运作。此外,我们假设 CRISPR-Cas 在斑马鱼中的活性可以通过抑制性抗 CRISPR(Acr)蛋白的表达来调节。在这里,我们使用简单的诱变方法证明来自酿脓链球菌(SpyCas9)、金黄色葡萄球菌(SauCas9)、Lachnospiraceae 菌(LbaCas12a,以前称为 LbCpf1)的 CRISPR-Cas 系统是能够在斑马鱼中同时运作的正交系统。来自 Acidaminococcus sp.(AspCas12a,以前称为 AsCpf1)和脑膜炎奈瑟菌(Nme2Cas9)的 CRISPR 系统在胚胎中也具有活性。我们使用三种 CRISPR 系统实现了多通道 CRISPR 记录,并表明 LbaCas12a 可能提供比以前方法更高的信息密度。我们还表明,II 型 Acrs(抗 CRISPRs)是 SpyCas9 在斑马鱼中的有效抑制剂。我们的结果表明,至少有五个 CRISPR-Cas 系统和两个抗 CRISPR 蛋白在斑马鱼胚胎中起作用。这些正交的 CRISPR-Cas 系统和 Acr 蛋白将使动物基因组编辑和遗传记录的时空控制的组合和交叠策略成为可能。