Suppr超能文献

正交 CRISPR-Cas 工具在斑马鱼胚胎中的基因组编辑、抑制和 CRISPR 记录。

Orthogonal CRISPR-Cas tools for genome editing, inhibition, and CRISPR recording in zebrafish embryos.

机构信息

School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA.

Department of Mathematics, University of Utah, Salt Lake City, UT 84112, USA.

出版信息

Genetics. 2022 Jan 4;220(1). doi: 10.1093/genetics/iyab196.

Abstract

The clustered regularly interspaced short palindromic repeats (CRISPR)-Cas universe continues to expand. The type II CRISPR-Cas system from Streptococcus pyogenes (SpyCas9) is the most widely used for genome editing due to its high efficiency in cells and organisms. However, concentrating on a single CRISPR-Cas system imposes limits on target selection and multiplexed genome engineering. We hypothesized that CRISPR-Cas systems originating from different bacterial species could operate simultaneously and independently due to their distinct single-guide RNAs (sgRNAs) or CRISPR-RNAs (crRNAs), and protospacer adjacent motifs (PAMs). Additionally, we hypothesized that CRISPR-Cas activity in zebrafish could be regulated through the expression of inhibitory anti-CRISPR (Acr) proteins. Here, we use a simple mutagenesis approach to demonstrate that CRISPR-Cas systems from S. pyogenes (SpyCas9), Streptococcus aureus (SauCas9), Lachnospiraceae bacterium (LbaCas12a, previously known as LbCpf1) are orthogonal systems capable of operating simultaneously in zebrafish. CRISPR systems from Acidaminococcus sp. (AspCas12a, previously known as AsCpf1) and Neisseria meningitidis (Nme2Cas9) were also active in embryos. We implemented multichannel CRISPR recording using three CRISPR systems and show that LbaCas12a may provide superior information density compared with previous methods. We also demonstrate that type II Acrs (anti-CRISPRs) are effective inhibitors of SpyCas9 in zebrafish. Our results indicate that at least five CRISPR-Cas systems and two anti-CRISPR proteins are functional in zebrafish embryos. These orthogonal CRISPR-Cas systems and Acr proteins will enable combinatorial and intersectional strategies for spatiotemporal control of genome editing and genetic recording in animals.

摘要

成簇规律间隔短回文重复序列(CRISPR)-Cas 系统不断发展。来自酿脓链球菌(SpyCas9)的 II 型 CRISPR-Cas 系统由于其在细胞和生物体中的高效率,是最常用于基因组编辑的系统。然而,专注于单个 CRISPR-Cas 系统会限制靶标选择和多路基因组工程。我们假设来自不同细菌物种的 CRISPR-Cas 系统可以由于其独特的单指导 RNA(sgRNA)或 CRISPR-RNA(crRNA)和间隔区临近基序(PAM)而同时独立地运作。此外,我们假设 CRISPR-Cas 在斑马鱼中的活性可以通过抑制性抗 CRISPR(Acr)蛋白的表达来调节。在这里,我们使用简单的诱变方法证明来自酿脓链球菌(SpyCas9)、金黄色葡萄球菌(SauCas9)、Lachnospiraceae 菌(LbaCas12a,以前称为 LbCpf1)的 CRISPR-Cas 系统是能够在斑马鱼中同时运作的正交系统。来自 Acidaminococcus sp.(AspCas12a,以前称为 AsCpf1)和脑膜炎奈瑟菌(Nme2Cas9)的 CRISPR 系统在胚胎中也具有活性。我们使用三种 CRISPR 系统实现了多通道 CRISPR 记录,并表明 LbaCas12a 可能提供比以前方法更高的信息密度。我们还表明,II 型 Acrs(抗 CRISPRs)是 SpyCas9 在斑马鱼中的有效抑制剂。我们的结果表明,至少有五个 CRISPR-Cas 系统和两个抗 CRISPR 蛋白在斑马鱼胚胎中起作用。这些正交的 CRISPR-Cas 系统和 Acr 蛋白将使动物基因组编辑和遗传记录的时空控制的组合和交叠策略成为可能。

相似文献

2
Guide RNAs: A Glimpse at the Sequences that Drive CRISPR-Cas Systems.
Cold Spring Harb Protoc. 2016 Jul 1;2016(7):2016/7/pdb.top090902. doi: 10.1101/pdb.top090902.
3
Expanding the Genome-Editing Toolbox with Cas9 Using a Unique Protospacer Adjacent Motif Sequence.
CRISPR J. 2024 Aug;7(4):197-209. doi: 10.1089/crispr.2024.0013. Epub 2024 Aug 7.
4
Genome Editing in Zebrafish by ScCas9 Recognizing NNG PAM.
Cells. 2021 Aug 16;10(8):2099. doi: 10.3390/cells10082099.
5
DEVELOPMENT. CRISPR views of embryos and cells.
Science. 2016 Jun 3;352(6290):1156-7. doi: 10.1126/science.352.6290.1156.
8
A Compact, High-Accuracy Cas9 with a Dinucleotide PAM for In Vivo Genome Editing.
Mol Cell. 2019 Feb 21;73(4):714-726.e4. doi: 10.1016/j.molcel.2018.12.003. Epub 2018 Dec 20.
9
Fusion guide RNAs for orthogonal gene manipulation with Cas9 and Cpf1.
Nat Commun. 2017 Nov 23;8(1):1723. doi: 10.1038/s41467-017-01650-w.
10
OffScan: a universal and fast CRISPR off-target sites detection tool.
BMC Genomics. 2020 Mar 5;21(Suppl 1):872. doi: 10.1186/s12864-019-6241-9.

引用本文的文献

2
The lives of cells, recorded.
Nat Rev Genet. 2025 Mar;26(3):203-222. doi: 10.1038/s41576-024-00788-w. Epub 2024 Nov 25.
3
Barcoding Notch signaling in the developing brain.
Development. 2024 Dec 15;151(24). doi: 10.1242/dev.203102. Epub 2024 Dec 20.
4
Barcoding Notch signaling in the developing brain.
bioRxiv. 2024 May 10:2024.05.10.593533. doi: 10.1101/2024.05.10.593533.
6
High-throughput CRISPR technology: a novel horizon for solid organ transplantation.
Front Immunol. 2024 Jan 4;14:1295523. doi: 10.3389/fimmu.2023.1295523. eCollection 2023.
7
Inhibitory mechanism of CRISPR-Cas9 by AcrIIC4.
Nucleic Acids Res. 2023 Sep 22;51(17):9442-9451. doi: 10.1093/nar/gkad669.
8
Gadusol is a maternally provided sunscreen that protects fish embryos from DNA damage.
Curr Biol. 2023 Aug 7;33(15):3229-3237.e4. doi: 10.1016/j.cub.2023.06.012. Epub 2023 Jun 26.
9
Gadusol is a maternally provided sunscreen that protects fish embryos from DNA damage.
bioRxiv. 2023 Jan 31:2023.01.30.526370. doi: 10.1101/2023.01.30.526370.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验