Hefei National Laboratory for Physical Sciences at the Microscale, School of Chemistry and Materials Science, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, CAS Center for Excellence in Nanoscience, iChEM, University of Science and Technology of China, Hefei, China.
Science. 2021 Dec 10;374(6573):1360-1365. doi: 10.1126/science.abi9828. Epub 2021 Nov 4.
The stability of supported nanocatalysts is crucial to meeting environmental and energy challenges and necessitates fundamental theory to relieve trial-and-error experimentation and accelerate lab-to-fab translation. Here, we report a Sabatier principle of metal-support interaction for stabilizing metal nanocatalysts against sintering based on the kinetic simulations of 323 metal-support pairs using scaling relations from 1252 energetics data. Too strong of an interaction is shown to trigger Ostwald ripening, whereas too weak of an interaction stimulates particle migration and coalescence. High-throughput screening of supports enables the sintering resistance of nanocatalysts to reach the Tammann temperature on homogeneous supports and far beyond it on heteroenergetic supports. This theory, which is substantiated by first-principles neural network molecular dynamics simulations and experiments, paves the way for the design of ultrastable nanocatalysts.
负载型纳米催化剂的稳定性对于应对环境和能源挑战至关重要,这需要基础理论来减轻反复试验的实验,并加速从实验室到工厂的转化。在这里,我们报告了一种基于动力学模拟的金属-载体相互作用的 Sabatier 原理,该原理用于稳定金属纳米催化剂,防止烧结,模拟使用了 1252 个能量学数据的标度关系对 323 种金属-载体对进行模拟。结果表明,太强的相互作用会引发奥斯特瓦尔德熟化,而太弱的相互作用会刺激颗粒迁移和聚集。通过高通量筛选载体,可以使纳米催化剂的抗烧结能力达到均相载体上的 Tammann 温度,甚至在异质能载体上也能远远超过该温度。这一理论得到了第一性原理神经网络分子动力学模拟和实验的证实,为设计超稳定纳米催化剂铺平了道路。