Department of Chemistry, National Taiwan University, Taipei 106, Taiwan.
Department of Mechanical Engineering and Graduate Institute of Manufacturing Technology, National Taipei University of Technology, Taipei 106, Taiwan.
J Am Chem Soc. 2021 Nov 17;143(45):19058-19066. doi: 10.1021/jacs.1c08334. Epub 2021 Nov 4.
Portable near-infrared (NIR) light sources are in high demand for applications in spectroscopy, night vision, bioimaging, and many others. Typical phosphor designs feature isolated Cr ion centers, and it is challenging to design broadband NIR phosphors based on Cr-Cr pairs. Here, we explore the solid-solution series SrAlGaO:0.12Cr ( = 0, 2, 4, 6, 8, 10, and 12) as phosphors featuring Cr-Cr pairs and evaluate structure-property relations within the series. We establish the incorporation of Ga within the magentoplumbite-type structure at five distinct crystallographic sites and evaluate the effect of this incorporation on the Cr-Cr ion pair proximity. Electron paramagnetic measurements reveal the presence of both isolated Cr and Cr-Cr pairs, resulting in NIR luminescence at approximately 650-1050 nm. Unexpectedly, the origin of broadband NIR luminescence with a peak within the range 740-820 nm is related to the Cr-Cr ion pair. We demonstrate the application of the SrAlGaO:0.12Cr phosphor, which possesses an internal quantum efficiency of ∼85%, a radiant flux of ∼95 mW, and zero thermal quenching up to 500 K. This work provides a further understanding of spectral shifts in phosphor solid solutions and in particular the application of the magentoplumbites as promising next-generation NIR phosphor host systems.
便携式近红外(NIR)光源在光谱学、夜视、生物成像等领域有很高的应用需求。典型的荧光粉设计采用孤立的 Cr 离子中心,而基于 Cr-Cr 对设计宽带 NIR 荧光粉具有挑战性。在这里,我们探索了 SrAlGaO:0.12Cr( = 0、2、4、6、8、10 和 12)的固溶体系列作为具有 Cr-Cr 对的荧光粉,并评估了该系列中的结构-性质关系。我们确定了 Ga 在镁尖晶石型结构中在五个不同的晶体学位置上的掺入,并评估了这种掺入对 Cr-Cr 离子对接近程度的影响。电子顺磁共振测量表明存在孤立的 Cr 和 Cr-Cr 对,导致约 650-1050nm 的 NIR 发光。出乎意料的是,约 740-820nm 范围内的峰值宽带 NIR 发光的起源与 Cr-Cr 离子对有关。我们展示了 SrAlGaO:0.12Cr 荧光粉的应用,其内部量子效率约为 85%,辐射通量约为 95mW,零热猝灭至 500K。这项工作进一步了解了荧光粉固溶体中的光谱位移,特别是将镁尖晶石用作有前途的下一代 NIR 荧光粉主体系统的应用。