Suppr超能文献

扩散峰度成像联合动态磁敏感对比增强 MRI 鉴别高级别胶质瘤复发与假性进展。

Diffusion kurtosis imaging combined with dynamic susceptibility contrast-enhanced MRI in differentiating high-grade glioma recurrence from pseudoprogression.

机构信息

Department of Radiology, Zhongda Hospital, Southeast University, No. 87 Dingjiaqiao, Nanjing 210009, Jiangsu Province, PR China.

Department of Pathology, Shanxi Provincial People's Hospital Affiliated to Shanxi Medical University, No. 29 of Twin Towers Temple Street, Taiyuan 030012, Shanxi Province, PR China.

出版信息

Eur J Radiol. 2021 Nov;144:109941. doi: 10.1016/j.ejrad.2021.109941. Epub 2021 Aug 31.

Abstract

OBJECTIVES

To compare the added value of diffusion kurtosis imaging (DKI) with the combination of dynamic susceptibility contrast-enhanced (DSC) MRI in differentiating glioma recurrence from pseudoprogression.

METHODS

Thirty-four patients with high-grade gliomas developing new and/or increasing enhanced lesions within six months after surgery and chemoradiotherapy were retrospectively analyzed. All patients were pathologically confirmed to have recurrent glioma (n = 22) or pseudoprogression (n = 12). The DKI and DSC MRI parameters were calculated based on the enhanced lesions on contrast-enhanced T1WI. ROC analysis was performed on significant variables to determine their diagnostic performance. Multivariate logistic regression was used to determine the best prediction model for discrimination.

RESULTS

The relative mean kurtosis (rMK), relative axial kurtosis (rKa), relative cerebral blood volume (rCBV), and relative mean transit time (rMTT) of glioma recurrence were higher than those of pseudoprogression (all, P < 0.05). The AUCs and diagnostic accuracy were 0.879 and 82.35% for rMK, 0.723 and 70.59% for rKa, 0.890 and 82.35% for rCBV, 0.765 and 73.53% for rMTT, respectively. A multivariate logistic regression model showed a significant contribution of rMK (P = 0.006) and rCBV (P = 0.009) as independent imaging classifiers for discrimination. The combined use of rMK and rCBV improved the AUC to 0.924 (P < 0.001) and the diagnostic accuracy to 88.24%.

CONCLUSION

DKI may be a valuable non-invasive tool in differentiating glioma recurrence from pseudoprogression, and its use in combination with DSC MRI can improve diagnostic performance in assessing treatment response compared with either technique alone.

摘要

目的

比较扩散峰度成像(DKI)与动态对比增强磁共振(DSC MRI)联合应用在鉴别肿瘤复发与假性进展中的价值。

方法

回顾性分析 34 例术后放化疗后 6 个月内出现新的和/或增强病灶的高级别脑胶质瘤患者。所有患者均经病理证实为肿瘤复发(n=22)或假性进展(n=12)。根据增强 T1WI 上的强化病灶计算 DKI 和 DSC MRI 参数。对有统计学意义的变量进行 ROC 分析,以确定其诊断性能。采用多变量逻辑回归确定最佳预测模型。

结果

肿瘤复发的相对平均峰度(rMK)、相对轴向峰度(rKa)、相对脑血容量(rCBV)和相对平均通过时间(rMTT)均高于假性进展(均 P<0.05)。rMK 的 AUC 和诊断准确率分别为 0.879 和 82.35%,rKa 为 0.723 和 70.59%,rCBV 为 0.890 和 82.35%,rMTT 为 0.765 和 73.53%。多变量逻辑回归模型显示 rMK(P=0.006)和 rCBV(P=0.009)对鉴别诊断有显著贡献,是独立的影像学分类器。rMK 和 rCBV 的联合使用可将 AUC 提高至 0.924(P<0.001),诊断准确率提高至 88.24%。

结论

DKI 可能是鉴别肿瘤复发与假性进展的一种有价值的无创工具,与 DSC MRI 联合使用可提高评估治疗反应的诊断性能,优于单一技术。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验