Suppr超能文献

基于扩散峰度成像衍生图的直方图分析可在术前区分低级别和高级别胶质瘤。

Histogram analysis of diffusion kurtosis imaging derived maps may distinguish between low and high grade gliomas before surgery.

机构信息

Department of Radiology, First Affiliated Hospital of China Medical University, Shenyang, 110001, China.

Department of Radiology, First Affiliated Hospital of Yangtze University, Jingzhou, 434000, China.

出版信息

Eur Radiol. 2018 Apr;28(4):1748-1755. doi: 10.1007/s00330-017-5108-1. Epub 2017 Nov 16.

Abstract

OBJECTIVE

To investigate the value of histogram analysis of diffusion kurtosis imaging (DKI) maps in the evaluation of glioma grading.

METHODS

A total of 39 glioma patients who underwent preoperative magnetic resonance imaging (MRI) were classified into low-grade (13 cases) and high-grade (26 cases) glioma groups. Parametric DKI maps were derived, and histogram metrics between low- and high-grade gliomas were analysed. The optimum diagnostic thresholds of the parameters, area under the receiver operating characteristic curve (AUC), sensitivity, and specificity were achieved using a receiver operating characteristic (ROC).

RESULT

Significant differences were observed not only in 12 metrics of histogram DKI parameters (P<0.05), but also in mean diffusivity (MD) and mean kurtosis (MK) values, including age as a covariate (F=19.127, P<0.001 and F=20.894, P<0.001, respectively), between low- and high-grade gliomas. Mean MK was the best independent predictor of differentiating glioma grades (B=18.934, 22.237 adjusted for age, P<0.05). The partial correlation coefficient between fractional anisotropy (FA) and kurtosis fractional anisotropy (KFA) was 0.675 (P<0.001). The AUC of the mean MK, sensitivity, and specificity were 0.925, 88.5% and 84.6%, respectively.

CONCLUSIONS

DKI parameters can effectively distinguish between low- and high-grade gliomas. Mean MK is the best independent predictor of differentiating glioma grades.

KEY POINTS

• DKI is a new and important method. • DKI can provide additional information on microstructural architecture. • Histogram analysis of DKI may be more effective in glioma grading.

摘要

目的

探讨扩散峰度成像(DKI)图直方图分析在胶质瘤分级评估中的价值。

方法

共纳入 39 例术前磁共振成像(MRI)患者,分为低级别(13 例)和高级别(26 例)胶质瘤组。得出参数 DKI 图,并分析低级别和高级别胶质瘤之间的直方图指标。使用受试者工作特征(ROC)曲线获得参数的最佳诊断阈值、曲线下面积(AUC)、敏感度和特异度。

结果

不仅在直方图 DKI 参数的 12 个指标中观察到差异(P<0.05),而且在平均弥散度(MD)和平均峰度(MK)值中也观察到差异,包括作为协变量的年龄(F=19.127,P<0.001 和 F=20.894,P<0.001)。MK 均值是区分胶质瘤分级的最佳独立预测因子(B=18.934,调整年龄后的 22.237,P<0.05)。各向异性分数(FA)和峰度各向异性分数(KFA)之间的偏相关系数为 0.675(P<0.001)。MK 均值、敏感度和特异度的 AUC 分别为 0.925、88.5%和 84.6%。

结论

DKI 参数可有效区分低级别和高级别胶质瘤。MK 均值是区分胶质瘤分级的最佳独立预测因子。

关键点

  1. DKI 是一种新的重要方法。

  2. DKI 可提供有关微观结构架构的附加信息。

  3. DKI 直方图分析可能在胶质瘤分级中更有效。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验