School of Human Evolution and Social Change, Arizona State University, United States; Center for Evolution and Medicine, Arizona State University, United States.
School of Human Evolution and Social Change, Arizona State University, United States; Center for Bioarchaeology, Arizona State University, United States; Maricopa County Office of the Medical Examiner, Phoenix, AZ, United States; School of Life Sciences, Arizona State University, United States; School of Mathematical and Natural Sciences, Arizona State University, United States.
Forensic Sci Int Genet. 2022 Jan;56:102610. doi: 10.1016/j.fsigen.2021.102610. Epub 2021 Oct 24.
The recovery and analysis of genetic material obtained from thermally altered human bones and teeth are increasingly important to forensic investigations, especially in cases where soft-tissue identification is no longer possible. Although little is known about how these fire-related processes affect DNA degradation over time, next-generation sequencing technology in combination with traditional osteobiographical applications may provide us clues to these questions. In this study, we compare whole mitochondrial genome data generated using two different DNA extraction methods from 27 thermally altered samples obtained from fire victims (Maricopa County, Arizona) . DNA extracts were converted to double-stranded DNA libraries and enriched for whole mitochondrial DNA (mtDNA) using synthetic biotinylated RNA baits, then sequenced on an Illumina MiSeq. We processed the mitochondrial data using an in-house computational pipeline (MitoPipe1.0) composed of ancient DNA and modern genomics applications, then compared the resulting information across the two extraction types and five burn categories. Our analysis shows that DNA fragmentation increases with temperature, but that the acute insult from fire combined with the lack of water is insufficient to produce 5' and 3' terminal deamination characteristic of ancient DNA. Our data also suggest an acute and significant point of DNA degradation between 350 °C and 550 °C, and that the likelihood of generating high quality mtDNA haplogroup calls decreases significantly at temperatures > 550 °C. This research is part of a concerted effort to understand how fire affects our ability to generate genetic profiles suitable for forensic identification purposes.
从受热改变的人类骨骼和牙齿中获取的遗传物质的恢复和分析对于法医调查越来越重要,尤其是在软组织识别不再可能的情况下。虽然我们对这些与火灾相关的过程如何随时间影响 DNA 降解知之甚少,但下一代测序技术与传统的骨生物学应用相结合,可能为我们提供解决这些问题的线索。在这项研究中,我们比较了从来自火灾受害者(亚利桑那州马里科帕县)的 27 个受热改变的样本中使用两种不同 DNA 提取方法生成的全线粒体基因组数据。将 DNA 提取物转化为双链 DNA 文库,并使用合成的生物素化 RNA 诱饵富集全线粒体 DNA(mtDNA),然后在 Illumina MiSeq 上进行测序。我们使用包含古 DNA 和现代基因组学应用程序的内部计算管道(MitoPipe1.0)处理线粒体数据,然后比较两种提取类型和五个烧伤类别之间的结果信息。我们的分析表明,DNA 片段化随温度升高而增加,但火灾的急性损伤加上缺乏水分不足以产生与古 DNA 特征一致的 5'和 3'末端脱氨。我们的数据还表明,在 350°C 和 550°C 之间存在一个急性和显著的 DNA 降解点,并且在温度>550°C 时,生成高质量 mtDNA 单倍型调用的可能性显著降低。这项研究是为了了解火灾如何影响我们生成适合法医鉴定目的的遗传谱的能力而进行的协同努力的一部分。