Pescador Nuria, Francisco Vera, Vázquez Patricia, Esquinas Eva María, González-Páramos Cristina, Valdecantos M Pilar, García-Martínez Irma, Urrutia Andrés A, Ruiz Laura, Escalona-Garrido Carmen, Foretz Marc, Viollet Benoit, Fernández-Moreno Miguel Ángel, Calle-Pascual Alfonso L, Obregón María Jesús, Aragonés Julián, Valverde Ángela M
Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Madrid, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERdem), Instituto de Salud Carlos III, Madrid, Spain.
Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Madrid, Spain.
Redox Biol. 2021 Oct 19;48:102171. doi: 10.1016/j.redox.2021.102171.
Therapeutic potential of metformin in obese/diabetic patients has been associated to its ability to combat insulin resistance. However, it remains largely unknown the signaling pathways involved and whether some cell types are particularly relevant for its beneficial effects. M1-activation of macrophages by bacterial lipopolysaccharide (LPS) promotes a paracrine activation of hypoxia-inducible factor-1α (HIF1α) in brown adipocytes which reduces insulin signaling and glucose uptake, as well as β-adrenergic sensitivity. Addition of metformin to M1-polarized macrophages blunted these signs of brown adipocyte dysfunction. At the molecular level, metformin inhibits an inflammatory program executed by HIF1α in macrophages by inducing its degradation through the inhibition of mitochondrial complex I activity, thereby reducing oxygen consumption in a reactive oxygen species (ROS)-independent manner. In obese mice, metformin reduced inflammatory features in brown adipose tissue (BAT) such as macrophage infiltration, proinflammatory signaling and gene expression, and restored the response to cold exposure. In conclusion, the impact of metformin on macrophages by suppressing a HIF1α-dependent proinflammatory program is likely responsible for a secondary beneficial effect on insulin-mediated glucose uptake and β-adrenergic responses in brown adipocytes.
二甲双胍对肥胖/糖尿病患者的治疗潜力与其对抗胰岛素抵抗的能力有关。然而,其涉及的信号通路以及某些细胞类型是否对其有益作用特别重要,在很大程度上仍不清楚。细菌脂多糖(LPS)对巨噬细胞的M1激活促进了棕色脂肪细胞中缺氧诱导因子-1α(HIF1α)的旁分泌激活,这会降低胰岛素信号传导和葡萄糖摄取,以及β-肾上腺素能敏感性。将二甲双胍添加到M1极化的巨噬细胞中可减轻棕色脂肪细胞功能障碍的这些迹象。在分子水平上,二甲双胍通过抑制线粒体复合体I的活性诱导HIF1α降解,从而以不依赖活性氧(ROS)的方式减少氧气消耗,进而抑制巨噬细胞中由HIF1α执行的炎症程序。在肥胖小鼠中,二甲双胍减少了棕色脂肪组织(BAT)中的炎症特征,如巨噬细胞浸润、促炎信号传导和基因表达,并恢复了对冷暴露的反应。总之,二甲双胍通过抑制HIF1α依赖性促炎程序对巨噬细胞产生的影响,可能是其对棕色脂肪细胞中胰岛素介导的葡萄糖摄取和β-肾上腺素能反应产生继发性有益作用的原因。