Suppr超能文献

克服在大脑中检测 GPCR 寡聚化的挑战。

Overcoming the Challenges of Detecting GPCR Oligomerization in the Brain.

机构信息

Pharmacology Unit, Department of Pathology and Experimental Therapeutics, School of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, 08907 L'Hospitalet de Llobregat, Spain.

Neuropharmacology & Pain Group, Neuroscience Program, Bellvitge Institute for Biomedical Research, 08907 L'Hospitalet de Llobregat, Spain.

出版信息

Curr Neuropharmacol. 2022;20(6):1035-1045. doi: 10.2174/1570159X19666211104145727.

Abstract

G protein-coupled receptors (GPCRs) constitute the largest group of membrane receptor proteins controlling brain activity. Accordingly, GPCRs are the main target of commercial drugs for most neurological and neuropsychiatric disorders. One of the mechanisms by which GPCRs regulate neuronal function is by homo- and heteromerization, with the establishment of direct protein-protein interactions between the same and different GPCRs. The occurrence of GPCR homo- and heteromers in artificial systems is generally well accepted, but more specific methods are necessary to address GPCR oligomerization in the brain. Here, we revise some of the techniques that have mostly contributed to reveal GPCR oligomers in native tissue, which include immunogold electron microscopy, proximity ligation assay (PLA), resonance energy transfer (RET) between fluorescent ligands and the Amplified Luminescent Proximity Homogeneous Assay (ALPHA). Of note, we use the archetypical GPCR oligomer, the adenosine A receptor (AAR)-dopamine D receptor (DR) heteromer as an example to illustrate the implementation of these techniques, which can allow visualizing GPCR oligomers in the human brain under normal and pathological conditions. Indeed, GPCR oligomerization may be involved in the pathophysiology of neurological and neuropsychiatric disorders.

摘要

G 蛋白偶联受体 (GPCRs) 是控制大脑活动的最大的一类膜受体蛋白。因此,GPCR 是大多数神经和神经精神疾病的商业药物的主要靶点。GPCR 调节神经元功能的机制之一是同型和异型寡聚化,即相同和不同 GPCR 之间建立直接的蛋白-蛋白相互作用。GPCR 同型和异型寡聚体在人工系统中的出现通常被广泛接受,但需要更具体的方法来解决大脑中的 GPCR 寡聚化问题。在这里,我们回顾了一些在天然组织中揭示 GPCR 寡聚体的主要技术,包括免疫金电子显微镜、邻近连接分析 (PLA)、荧光配体之间的共振能量转移 (RET) 和放大发光邻近均相分析 (ALPHA)。值得注意的是,我们使用典型的 GPCR 寡聚体,即腺苷 A 受体 (AAR)-多巴胺 D 受体 (DR) 异源二聚体作为示例来说明这些技术的实施,这些技术可以在正常和病理条件下可视化人类大脑中的 GPCR 寡聚体。事实上,GPCR 寡聚化可能与神经和神经精神疾病的病理生理学有关。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/209f/9886828/c261b7b6853a/CN-20-1035_F1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验