Oh Chang-Geun, Han Sang-Hoon, Cheon Sangmo
Research Institute for Natural Sciences, Hanyang University, Seoul, 04763, Korea.
Department of Physics, Hanyang University, Seoul, 04763, Korea.
Sci Rep. 2021 Nov 4;11(1):21652. doi: 10.1038/s41598-021-01117-5.
We investigate the roles of symmetry and bulk-boundary correspondence in characterizing topological edge states in generalized Jackiw-Rebbi (JR) models. We show that time-reversal (T), charge-conjugation (C), parity (P), and discrete internal field rotation ([Formula: see text]) symmetries protect and characterize the various types of edge states such as chiral and nonchiral solitons via bulk-boundary correspondence in the presence of the multiple vacua. As two representative models, we consider the JR model composed of a single fermion field having a complex mass and the generalized JR model with two massless but interacting fermion fields. The JR model shows nonchiral solitons with the [Formula: see text] rotation symmetry, whereas it shows chiral solitons with the broken [Formula: see text] rotation symmetry. In the generalized JR model, only nonchiral solitons can emerge with only [Formula: see text] rotation symmetry, whereas both chiral and nonchiral solitons can exist with enhanced [Formula: see text] rotation symmetry. Moreover, we find that the nonchiral solitons have C, P symmetries while the chiral solitons do not, which can be explained by the symmetry-invariant lines connecting degenerate vacua. Finally, we find the symmetry correspondence between multiply-degenerate global vacua and solitons such that T, C, P symmetries of a soliton inherit from global minima that are connected by the soliton, which provides a novel tool for the characterization of topological solitons.
我们研究了对称性和体-边界对应在广义杰克维-雷比(JR)模型中刻画拓扑边缘态的作用。我们表明,时间反演(T)、电荷共轭(C)、宇称(P)和离散内场旋转([公式:见原文])对称性通过在存在多个真空的情况下的体-边界对应来保护和刻画各种类型的边缘态,如手性和非手性孤子。作为两个代表性模型,我们考虑由具有复质量的单个费米子场组成的JR模型以及具有两个无质量但相互作用的费米子场的广义JR模型。JR模型在[公式:见原文]旋转对称性下显示非手性孤子,而在[公式:见原文]旋转对称性破缺时显示手性孤子。在广义JR模型中,仅在[公式:见原文]旋转对称性下才能出现非手性孤子,而在手性和非手性孤子都可以在增强的[公式:见原文]旋转对称性下存在。此外,我们发现非手性孤子具有C、P对称性,而手性孤子不具有,这可以通过连接简并真空的对称不变线来解释。最后,我们发现多重简并全局真空与孤子之间的对称对应关系,使得孤子的T、C、P对称性继承自由孤子连接的全局极小值,这为刻画拓扑孤子提供了一种新工具。