Suppr超能文献

自动准团合并算法——一种基于子图密度的层次聚类算法

Automatic Quasi-Clique Merger Algorithm - a Hierarchical Clustering Based on Subgraph-Density.

作者信息

Payne Scott, Fuller Edgar, Spirou George, Zhang Cun-Quan

机构信息

West Virginia University.

Florida International University.

出版信息

Physica A. 2022 Jan 1;585. doi: 10.1016/j.physa.2021.126442. Epub 2021 Sep 24.

Abstract

The Automatic Quasi-clique Merger algorithm is a new algorithm adapted from early work published under the name QCM (introduced by Ou and Zhang in 2007). The AQCM algorithm performs hierarchical clustering in any data set for which there is an associated similarity measure quantifying the similarity of any data i and data j. Importantly, the method exhibits two valuable performance properties: 1) the ability to automatically return either a larger or smaller number of clusters depending on the inherent properties of the data rather than on a parameter. 2) the ability to return a very large number of relatively small clusters automatically when such clusters are reasonably well defined in a data set. In this work we present the general idea of a quasi-clique agglomerative approach, provide the full details of the mathematical steps of the AQCM algorithm, and explain some of the motivation behind the new methodology. The main achievement of the new methodology is that the agglomerative process now unfolds adaptively according to the inherent structure unique to a given data set, and this happens without the time-costly parameter adjustment that drove the previous QCM algorithm. For this reason we call the new algorithm . We provide a demonstration of the algorithm's performance at the task of community detection in a social media network of 22,900 nodes.

摘要

自动准团合并算法是一种新算法,改编自早期以QCM(由Ou和Zhang于2007年提出)之名发表的工作。AQCM算法可在任何具有关联相似性度量的数据集上执行层次聚类,该相似性度量用于量化任意数据i和数据j的相似性。重要的是,该方法具有两个有价值的性能特性:1)能够根据数据的固有属性而非参数自动返回较多或较少数量的聚类。2)当此类聚类在数据集中定义合理时,能够自动返回大量相对较小的聚类。在这项工作中,我们介绍了准团凝聚方法的总体思路,提供了AQCM算法数学步骤的完整细节,并解释了新方法背后的一些动机。新方法的主要成就是,凝聚过程现在根据给定数据集特有的固有结构自适应展开,并且这一过程无需像驱动先前QCM算法那样进行耗时的参数调整。因此,我们将新算法称为 。我们展示了该算法在一个拥有22900个节点的社交媒体网络中的社区检测任务上的性能。

相似文献

5
Resolving the structure of interactomes with hierarchical agglomerative clustering.利用层次凝聚聚类解析互作组学结构。
BMC Bioinformatics. 2011 Feb 15;12 Suppl 1(Suppl 1):S44. doi: 10.1186/1471-2105-12-S1-S44.
8
PFClust: a novel parameter free clustering algorithm.PFClust:一种新颖的无参数聚类算法。
BMC Bioinformatics. 2013 Jul 3;14:213. doi: 10.1186/1471-2105-14-213.
10
Sequential algorithm for fast clique percolation.用于快速团渗透的顺序算法。
Phys Rev E Stat Nonlin Soft Matter Phys. 2008 Aug;78(2 Pt 2):026109. doi: 10.1103/PhysRevE.78.026109. Epub 2008 Aug 15.

本文引用的文献

2
Multiresolution Consensus Clustering in Networks.网络中的多分辨率共识聚类
Sci Rep. 2018 Feb 19;8(1):3259. doi: 10.1038/s41598-018-21352-7.
3
The ground truth about metadata and community detection in networks.网络中关于元数据和社区检测的真相。
Sci Adv. 2017 May 3;3(5):e1602548. doi: 10.1126/sciadv.1602548. eCollection 2017 May.
8
Clustering by passing messages between data points.通过在数据点之间传递信息进行聚类。
Science. 2007 Feb 16;315(5814):972-6. doi: 10.1126/science.1136800. Epub 2007 Jan 11.
9
Modularity and community structure in networks.网络中的模块化与群落结构。
Proc Natl Acad Sci U S A. 2006 Jun 6;103(23):8577-82. doi: 10.1073/pnas.0601602103. Epub 2006 May 24.
10
Recursive unsupervised learning of finite mixture models.有限混合模型的递归无监督学习
IEEE Trans Pattern Anal Mach Intell. 2004 May;26(5):651-6. doi: 10.1109/TPAMI.2004.1273970.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验