Payne Scott, Fuller Edgar, Spirou George, Zhang Cun-Quan
West Virginia University.
Florida International University.
Physica A. 2022 Jan 1;585. doi: 10.1016/j.physa.2021.126442. Epub 2021 Sep 24.
The Automatic Quasi-clique Merger algorithm is a new algorithm adapted from early work published under the name QCM (introduced by Ou and Zhang in 2007). The AQCM algorithm performs hierarchical clustering in any data set for which there is an associated similarity measure quantifying the similarity of any data i and data j. Importantly, the method exhibits two valuable performance properties: 1) the ability to automatically return either a larger or smaller number of clusters depending on the inherent properties of the data rather than on a parameter. 2) the ability to return a very large number of relatively small clusters automatically when such clusters are reasonably well defined in a data set. In this work we present the general idea of a quasi-clique agglomerative approach, provide the full details of the mathematical steps of the AQCM algorithm, and explain some of the motivation behind the new methodology. The main achievement of the new methodology is that the agglomerative process now unfolds adaptively according to the inherent structure unique to a given data set, and this happens without the time-costly parameter adjustment that drove the previous QCM algorithm. For this reason we call the new algorithm . We provide a demonstration of the algorithm's performance at the task of community detection in a social media network of 22,900 nodes.
自动准团合并算法是一种新算法,改编自早期以QCM(由Ou和Zhang于2007年提出)之名发表的工作。AQCM算法可在任何具有关联相似性度量的数据集上执行层次聚类,该相似性度量用于量化任意数据i和数据j的相似性。重要的是,该方法具有两个有价值的性能特性:1)能够根据数据的固有属性而非参数自动返回较多或较少数量的聚类。2)当此类聚类在数据集中定义合理时,能够自动返回大量相对较小的聚类。在这项工作中,我们介绍了准团凝聚方法的总体思路,提供了AQCM算法数学步骤的完整细节,并解释了新方法背后的一些动机。新方法的主要成就是,凝聚过程现在根据给定数据集特有的固有结构自适应展开,并且这一过程无需像驱动先前QCM算法那样进行耗时的参数调整。因此,我们将新算法称为 。我们展示了该算法在一个拥有22900个节点的社交媒体网络中的社区检测任务上的性能。