Suppr超能文献

网络中关于元数据和社区检测的真相。

The ground truth about metadata and community detection in networks.

机构信息

Institute of Information and Communication Technologies, Electronics and Applied Mathematics, Université Catholique de Louvain, Louvain-la-Neuve, Belgium.

naXys, Université de Namur, Namur, Belgium.

出版信息

Sci Adv. 2017 May 3;3(5):e1602548. doi: 10.1126/sciadv.1602548. eCollection 2017 May.

Abstract

Across many scientific domains, there is a common need to automatically extract a simplified view or coarse-graining of how a complex system's components interact. This general task is called community detection in networks and is analogous to searching for clusters in independent vector data. It is common to evaluate the performance of community detection algorithms by their ability to find so-called ground truth communities. This works well in synthetic networks with planted communities because these networks' links are formed explicitly based on those known communities. However, there are no planted communities in real-world networks. Instead, it is standard practice to treat some observed discrete-valued node attributes, or metadata, as ground truth. We show that metadata are not the same as ground truth and that treating them as such induces severe theoretical and practical problems. We prove that no algorithm can uniquely solve community detection, and we prove a general No Free Lunch theorem for community detection, which implies that there can be no algorithm that is optimal for all possible community detection tasks. However, community detection remains a powerful tool and node metadata still have value, so a careful exploration of their relationship with network structure can yield insights of genuine worth. We illustrate this point by introducing two statistical techniques that can quantify the relationship between metadata and community structure for a broad class of models. We demonstrate these techniques using both synthetic and real-world networks, and for multiple types of metadata and community structures.

摘要

在许多科学领域中,人们普遍需要自动提取复杂系统组件相互作用的简化视图或粗粒度表示。这个通用任务在网络中被称为社区检测,类似于在独立向量数据中搜索聚类。通过评估社区检测算法在寻找所谓的真实社区方面的能力来评估其性能是很常见的。在具有种植社区的合成网络中,这效果很好,因为这些网络的链接是根据已知的社区显式形成的。然而,真实世界的网络中没有种植社区。相反,将一些观察到的离散值节点属性或元数据视为真实社区是标准做法。我们表明,元数据与真实社区不同,将它们视为真实社区会导致严重的理论和实际问题。我们证明没有算法可以唯一地解决社区检测问题,并且我们证明了社区检测的一般“无免费午餐”定理,这意味着不可能存在一种适用于所有可能的社区检测任务的算法。然而,社区检测仍然是一种强大的工具,节点元数据仍然具有价值,因此仔细探索它们与网络结构的关系可以产生真正有价值的见解。我们通过引入两种可以量化元数据和社区结构之间关系的统计技术来说明这一点,这些技术适用于广泛的模型类别。我们使用合成网络和真实世界网络以及多种类型的元数据和社区结构来演示这些技术。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/985b/5415338/f638b9222cc1/1602548-F1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验